欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2026, Vol. 37 ›› Issue (1): 295-304.doi: 10.13287/j.1001-9332.202601.016

• 综合评述 • 上一篇    下一篇

生态系统类型对铁氧化物结合态有机碳形成机制的影响

曾岩1, 林佳瑾1, 聂佳莉1, 尤孟阳1*, 李禄军2   

  1. 1广州大学环境科学与工程学院, 广州 510006;
    2中国科学院东北地理与农业生态研究所, 哈尔滨 150081
  • 收稿日期:2025-04-01 修回日期:2025-11-14 发布日期:2026-07-18
  • 通讯作者: *E-mail: myyou@gzhu.edu.cn
  • 作者简介:曾 岩, 男, 2002年生, 硕士研究生。主要从事土壤有机碳稳定性研究。E-mail: 1617741989@qq.com
  • 基金资助:
    中国科学院战略性先导科技专项(XDA28010301)和国家自然科学基金面上项目(42277340)

Influence of ecosystem type on the formation mechanisms of iron oxide-associated organic carbon

ZENG Yan1, LIN Jiajin1, NIE Jiali1, YOU Mengyang1*, LI Lujun2   

  1. 1School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;
    2Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
  • Received:2025-04-01 Revised:2025-11-14 Published:2026-07-18

摘要: 土壤作为全球陆地生态系统的最大活性碳库,其有机碳(SOC)稳定性对全球碳循环和气候变化至关重要。铁氧化物因其独特的化学性质,在SOC固定过程中发挥关键作用。本文综述了铁氧化物介导土壤有机碳稳定性的作用机制及其环境驱动因素的研究进展,聚焦森林、草地、农田生态系统中铁氧化物与有机碳的结合特征,并探讨生物与非生物因素对铁氧化物结合态有机碳(Fe-OC)的形成、转化和稳定性的调控作用。铁氧化物与有机碳的结合能力在不同生态系统中差异显著。农田生态系统中,人为管理措施和外部有机输入塑造了铁氧化物的碳结合潜力;森林生态系统中,稳定态的铁氧化物-有机碳复合体占主导,其形成受根系分泌物与土壤类型的协同调控;草地生态系统中,Fe-OC的稳定性受气候因子、根系分泌物及土壤类型的多重影响,降水量的增加可能加剧铁氧化物还原反应,进而改变Fe-OC的动态平衡。这些生态系统层面的差异源于植被组成、温度、降水和光照等环境条件变化驱动的土壤微环境及微生物群落结构的重塑。不同植被类型通过改变土壤pH、有机物输入量及根系分泌物化学组成,调节铁氧化物表面活性和矿物-有机复合体形成过程,而微生物群落结构的改变则进一步影响铁氧化物介导的碳固定机制。未来的研究应着重阐明Fe-OC形成和稳定性的微观机制,并评估气候变化如何重塑这些过程。从机制研究到定量模型的跨尺度整合将是预测Fe-OC在不同生态系统中长期稳定性及其对全球碳循环贡献的关键。

关键词: 铁氧化物, 土壤有机碳, 生态系统, 气候变化, 微生物

Abstract: Soil is the largest active carbon reservoir in terrestrial ecosystems. The persistence of soil organic carbon (SOC) plays a central role in regulating global carbon cycle and climate change. Iron oxides, with their unique chemical properties, are among the most important mineral phases controlling SOC stabilization. We synthesized current understanding of the mechanisms and drivers of SOC stabilization mediated by iron oxides. We highlighted the association patterns between iron oxides and organic carbon (Fe-OC) across forests, grasslands, and croplands, and explored how biotic and abiotic factors regulate the formation, transformation, and stability of Fe-OC complexes. The capacity of iron oxides to stabilize SOC varies substantially among ecosystems. In agricultural soils, management practices and external organic inputs shape the carbon-binding potential of iron oxides. In forests, Fe-OC complexes tend to be highly stable and are influenced by root exudates and soil mineralogy. Grasslands exhibit more variable Fe-OC dynamics, controlled by multiple factors including climate, root exudates and soil types. Increased precipitation can intensify iron reduction and subsequently alter Fe-OC stability. These ecosystem-level differences arise from shifts in soil microenvironments and microbial communities driven by vegetation composition, temperature, moisture, and light. Vegetation regulates iron oxide surface reactivity and mineral-organic associations through the changes in soil pH, organic matter inputs, and root exudate chemistry, while microbial community structure further influences Fe-mediated carbon stabilization pathways. Future research should reveal the micro-scale mechanisms underlying the formation and persistence of Fe-OC and assess how climate change will reshape these processes. Advancing cross-scale integration-from mechanistic studies to quantitative modeling-will be essential for predicting the long-term stability of Fe-OC across ecosystems and its contribution to global carbon cycle.

Key words: iron oxide, soil organic carbon, ecosystem, climate change, microbe