[1] West TAP, Wunder S, Sills EO, et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science, 2023, 381: 873-877 [2] Xu H, Yue C, Zhang Y, et al. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120: e2304988120 [3] Fang JY, Guo ZD, Hu HF, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glo-bal Change Biology, 2014, 20: 2019-2030 [4] Pugh TAM, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 4382-4387 [5] Yu Z, Ciais P, Piao SL, et al. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 2022, 13: 5374 [6] Peng B, Zhou ZY, Cai WX, et al. Maximum potential of vegetation carbon sink in Chinese forests. Science of the Total Environment, 2023, 905: 167325 [7] Pan YD, Birdsey RA, Fang JY, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993 [8] Moradi E, Sharifi A. Assessment of forest cover changes using multi-temporal Landsat observation. Environment, Development and Sustainability, 2023, 25: 1351-1360 [9] Liu CX, Zhang XD, Wang T, et al. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecological Indicators, 2022, 138: 108818 [10] Amarnath G, Babar S, Murthy RSM. Evaluating MODIS-vegetation continuous field products to assess tree cover change and forest fragmentation in India: A multi-scale satellite remote sensing approach. The Egyptian Journal of Remote Sensing and Space Sciences, 2017, 20: 157-168 [11] Yang YK, Xiao PF, Feng XZ, et al. Accuracy assessment of seven global land cover datasets over China. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 156-173 [12] 陈雨莹, 王龑, 邹艳红, 等. 全球土地覆盖产品中森林类型数据在中国区域的质量评估. 遥感技术与应用, 2023, 38(2): 341-352 [13] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13: 3907-3925 [14] 温亚南, 车亚辉, 光洁, 等. 森林覆盖产品在中国区域的质量评价. 国土资源遥感, 2020, 32(3): 32-38 [15] Hansen MC, Potapov PV, Moore R, et al. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342: 850-853 [16] Li Y, Sulla-menashe D, Motesharrei S, et al. Inconsistent estimates of forest cover change in China between 2000 and 2013 from multiple datasets: Differences in parameters, spatial resolution, and definitions. Scientific Reports, 2017, 7: 8748 [17] Sun WY, Ding XT, Su JB, et al. Land use and cover changes on the Loess Plateau: A comparison of six glo-bal or national land use and cover datasets. Land Use Policy, 2022, 119: 106165 [18] Dimiceli C, Carroll M, Sohlberg R, et al. MOD44B MODIS/terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. Greenbelt, MD, USA: NASA EOSDIS Land Processes DAAC, 2015 [19] 朱若柠, 沈文娟, 张亚丽, 等. 基于时间序列MODIS-VCF数据的云南省森林覆盖变化及破碎化分析. 南京林业大学学报:自然科学版, 2019, 43(2): 184-190 [20] Majasalmi T, Rautiainen M. Representation of tree cover in global land cover products: Finland as a case study area. Environmental Monitoring and Assessment, 2021, 193: 121 [21] 余涛, 庞勇, 蒙诗栎, 等. 天然林资源保护工程区植被覆盖度遥感估算及变化分析. 北京林业大学学报, 2023, 45(5): 1-13 [22] Wei XX, Liu Y, Qi L, et al. Monitoring forest dynamics in Africa during 2000-2020 using a remotely sensed fractional tree cover dataset. International Journal of Digital Earth, 2023, 16: 2212-2232 [23] Healey SP, Cohen WB, Yang ZQ, et al. Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 2018, 204: 717-728 [24] Decuyper M, Chavez RO, Lohbeck M, et al. Continuous monitoring of forest change dynamics with satellite time series. Remote Sensing of Environment, 2022, 269: 112829 [25] Patacca M, Lindner M, Lucas-Borja ME, et al. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 2023, 29: 1359-1376 [26] Tariq A, Jiango Y, Li QT, et al. Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive Bayes tree models with optical remote sensing data. He-liyon, 2023, 9: e13212 [27] Tsegaye NT, Dibaba WT, Gemeda DO. Spatiotemporal forest cover change and its implication for environmental sustainability in Dedo district of Jimma zone, southwest Ethiopia. Environmental and Sustainability Indicators, 2023, 19: 10062 [28] Kim DH, Sexton JO, Noojipady P, et al. Global, landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment, 2014, 155: 178-193 [29] Curtis PG, Slay CM, Harris NL, et al. Classifying dri-vers of global forest loss. Science, 2018, 361: 1108-1111 [30] 刘明志. 融合多源遥感数据的黄河流域(甘肃段)森林资源变化及影响因素分析. 硕士论文. 兰州: 兰州理工大学, 2023 [31] 徐昶, 刘琪璟. 长白山西坡施业区森林植被动态变化及其成因. 东北林业大学学报, 2023, 51(12): 37-43 [32] Doughty CE, Keany JM, Wiebe BC, et al. Tropical forests are approaching critical temperature thresholds. Nature, 2023, 621: 105-111 [33] Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449 [34] Yang J, Cooper DJ, Li Z, et al. Differences in tree and shrub growth responses to climate change in a boreal forest in China. Dendrochronologia, 2020, 63: 125744 [35] Bin Y, Huang ZL, Cao HL, et al. Seed rain composition responds to climate change in a subtropical forest. Science of the Total Environment, 2023, 903: 166772 [36] Dai JY, Liu HY, Wang YC, et al. Drought-modulated allometric patterns of trees in semi-arid forests. Communications Biology, 2020, 3: 405 [37] Shi SY, Yu JJ, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Pla-teau. Science of the Total Environment, 2021, 755: 142419 [38] 胡建全, 张金良. 山东省森林资源变化特点分析. 山东林业科技, 2018, 48(3): 19-24 [39] 王丽, 李宗泰, 刘焕彬, 等. 山东省森林资源质量变化及其与年均温关系研究. 林业调查规划, 2023, 48(1): 74-78 [40] 张春华, 居为民, 王登杰, 等. 2004—2013年山东省森林碳储量及其碳汇经济价值. 生态学报, 2018, 38(5): 1739-1749 [41] 刘玉红, 张筠, 张春华, 等. 2000—2015年山东省植被净初级生产力时空变化及其对气候变化的响应. 生态学杂志, 2019, 38(5): 1464-1471 [42] 赵冬林, 朱仕荣. 2010—2021年金沙江干热河谷植被覆盖度时空变化及其影响因素. 生态学杂志, 2024, 43(8): 2373-2381 [43] Fagan ME. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Global Change Biology, 2020, 26: 4679-4690 [44] 国家林业和草原局. 中国森林资源报告. 北京: 中国林业出版社, 2019 [45] 王凯. 山东省森林资源变化及驱动力分析. 硕士论文. 泰安: 山东农业大学, 2016 [46] 赵佩, 陈琼, 刘林山, 等. 柯西河流域森林覆盖度的空间分布及变化分析. 生态科学, 2020, 39(4): 89-98 [47] 马京京, 高美玲, 李振洪, 等. 黄河流域森林覆盖时空变化及驱动因素分析. 测绘通报, 2023(7): 51-57 |