[1] 解雅麟, 雷相东, 王海燕, 等. 长白落叶松叶面积回归模型及比叶面积估计. 林业科学研究, 2019, 32(4): 57-63 [Xie Y-L, Lei X-D, Wang H-Y, et al. Leaf area regression model and specific leaf area estimation of Larix olgensis. Forest Research, 2019, 32(4): 57-63] [2] Liu Q, Li FR. Spatial and seasonal variations of stan-dardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry trees. Forests, 2018, 9: 522 [3] 郑淑霞, 上官周平. 黄土高原油松和刺槐叶片光合生理适应性比较. 应用生态学报, 2007, 18(1): 16-22 [Zheng S-X, Shangguan Z-P. Photosynthetic physiological adaptabilities of Pinus tabuliformis and Robinia pseudoacacia in the Loess Plateau. Chinese Journal of Applied Ecology, 2007, 18(1): 16-22] [4] Siefert A, Violle C, Taudiere A. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18: 1406-1419 [5] Liu MZ, Wang Z, Li S, et al. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500 km transect in northern China. Scientific Reports, 2017, 7: 10780 [6] Niinemets Ü. Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment, 2007, 30: 1052-1071 [7] 刘强, 董利虎, 李凤日, 等. 长白落叶松树冠光合作用的空间异质性. 应用生态学报, 2016, 27(9): 2789-2796 [Liu Q, Dong L-H, Li F-R, et al. Spatial heterogeneity of canopy photosynthesis for Larix olgensis. Chinese Journal of Applied Ecology, 2016, 27(9): 2789-2796] [8] Ellsworth DS, Reich PB. Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Functional Ecology, 1992, 6: 423-435 [9] Niinemets Ü. Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies. Trees, 2017, 11: 144-154 [10] Meinzer FC, Bond BJ, Karanian JA. Biophysical constraints on leaf expansion in a tall conifer. Tree Physiology, 2008, 28: 197-206 [11] Cavaleri M, Oberbauer S, Clark D. Height is more important than light in determining leaf morphology in a tropical forest. Ecology, 2010, 91: 1730-1739 [12] Zhou HL, Zhou GS, He QJ, et al. Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 2019, 171: 103932 [13] Woodruff DR, Bond BJ, Meinzer FC. Does turgor limit growth in tall trees? Plant, Cell and Environment, 2004, 27: 229-236 [14] Marshall JD, Monserud RA. Foliage height influences specific leaf area of three conifer species. Canadian Journal of Forest Research, 2003, 33: 164-170 [15] Coble AP, Cavaleri MA. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiology, 2014, 32: 146-158 [16] Williams GM, Nelson AS. Spatial variation in specific leaf area and horizontal distribution of leaf area in juve-nile western larch (Larix occidentalis Nutt.). Trees, 2018, 32: 1621-1631 [17] Niinemets Ü, Cescatti A, Rodeghiero M. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell and Environment, 2005, 28: 1552-1566 [18] Xu L, Baldocchi DD. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 2003, 23: 865-877 [19] Rijkers T, Pons TL, Bongers F. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology, 2000, 14: 77-86 [20] Fellner H, Dirnberger GF, Sterba H. Specifific leaf area of European larch (Larix decidua Mi.). Trees, 2016, 30: 1237-1244 [21] 夏国威, 孙晓梅, 张守攻, 等. 日本落叶松树冠光合特性的空间变化. 林业科学, 2019, 55(6): 13-21 [Xia G-W, Sun X-M, Zhang S-G, et al. Spatial variation of photosynthetic characteristics in canopy of Larix kaempferi. Scientia Silvae Sincae, 2019, 55(6): 13-21] [22] 全先奎, 王传宽. 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 2015, 39(4): 352-361 [Quan X-K, Wang C-K. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 2015, 39(4): 352-361] [23] Burgess SSO, Dawson TE. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytologist, 2010, 174: 626-636 [24] Koch GW, Sillett SC, Jennings GM, et al. The limits to tree height. Nature, 2004, 428: 851-854 [25] Ishii H, Jennings G, Sillett SC. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia, 2008, 156: 751-763 [26] 夏国威, 陈东升, 张守攻, 等. 日本落叶松冠层光合生理参数的空间异质性研究. 林业科学研究, 2018, 31(6): 130-137 [Xia G-W, Chen D-S, Zhang S-G, et al. Spatial heterogeneity of photosynthetic and physiolo-gical parameters in Larix kaempferi crown. Forest Research, 2018, 31(6): 130-137] [27] Hagemeier M, Leuschner C. Functional crown architecture of five temperate broadleaf tree species: Vertical gradients in leaf morphology, leaf angle, and leaf area density. Forests, 2019, 10: 265 [28] Xiong D, Wang D, Liu X, et al. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Annals of Botany, 2016, 117: 963-971 [29] 王兆国, 王传宽. 三种温带树种叶片呼吸的时间动态及其影响因子. 生态学报, 2013, 33(5): 1456-1464 [Wang Z-G, Wang C-K. Temporal dynamics and influen-cing factors of leaf respiration for three temperate tree species. Acta Ecologica Sinica, 2013, 33(5): 1456-1464] [30] Coble AP, Cavaleri MA. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia, 2015, 177: 1131-1143 [31] Migita C, Chiba Y, Tange T. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 2007, 27: 63-70 [32] Coble AP, VanderWall B, Mau A, et al. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiology, 2016, 36: 1077-1091 [33] Liu Q, Xie LF, Li FR. Dynamic simulation of the crown net photosynthetic rate for young Larix olgensis Henry trees. Forests, 2019, 10: 321 |