[1] 张晗, 欧阳真程, 赵小敏. 不同利用方式对江西省农田土壤碳氮磷生态化学计量特征的影响. 环境科学学报, 2019, 39(3): 939-951 [2] 赵雪, 贾小敏, 卢笑玥, 等. 黄土高原油井开发迹地自然恢复过程土壤酶活性及其化学计量特征. 应用与环境生物学报, 2023, 29(1): 227-234 [3] 吴秀芝, 阎欣, 王波, 等. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 2018, 42(10): 1022-1032 [4] 韩子琛, 郭强, 夏允, 等. 亚热带三种林分土壤酶活性和酶化学计量比特征. 应用生态学报, 2024, 35(6): 1501-1508 [5] Sinsabaugh RL, Hill BH, Shah JJF. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798 [6] Moorhead DL, Sinsabaugh RL, Hill BH, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7 [7] 曹雯婕, 李玉强, 陈银萍, 等. 科尔沁沙地不同土地利用类型土壤化学计量特征. 应用生态学报, 2022, 33(12): 3312-3320 [8] 王珮环, 张晴雯, 石玉龙, 等. 秸秆覆盖和配施有机肥对侵蚀坡耕地土壤胞外酶化学计量特征的影响. 植物营养与肥料学报, 2023, 29(3): 459-471 [9] 肖海兵, 李忠武, 聂小东, 等. 南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响. 土壤学报, 2016, 53(4): 881-890 [10] 韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 2018, 29(7): 2433-2444 [11] 芦东旭, 耿雪琪, 崔子怡, 等. 黄土丘陵区不同林龄刺槐养分利用特征和林分质量研究. 北京林业大学学报, 2023, 45(12): 90-99 [12] Dong CG, Qiao YN, Cao Y, et al. Seasonal variations in carbon, nitrogen, and phosphorus stoichiometry of a Robinia pseudoacacia plantation on the Loess Hilly Region, China. Forests, 2021, 12: 214 [13] Zhang W, Xu YD, Gao DX, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robi-nia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 2019, 134: 1-14 [14] 简俊楠, 刘伟超, 朱玉帆, 等. 短期氮添加对黄土高原人工刺槐林土壤有机碳组分的影响. 环境科学, 2023, 44(5): 2767-2774 [15] 王宝荣, 杨佳佳, 安韶山, 等. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响. 应用生态学报, 2018, 29(1): 247-259 [16] 张富荣, 柳洋, 史常明, 等. 不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征. 生态环境学报, 2021, 30(3): 485-491 [17] Su ZX, Zhu XY, Wang YB, et al. Litter C and N losses at different decomposition stages of Robinia pseudoacacia: The weaker effects of soil enzyme activities compared with those of litter quality and the soil environment. Frontiers in Environmental Science, 2022, 10: 956309 [18] Deng L, Peng CH, Huang CB, et al. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma, 2019, 353: 188-200 [19] Moorhead DL, Rinkes ZL, Sinsabaugh RL, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223 [20] 王世豪, 徐新良, 黄麟, 等. 1980s—2010s东北土壤养分时空变化特征. 应用生态学报, 2023, 34(4): 865-875 [21] Yao B, Wang XY, Li YQ, et al. Soil extracellular enzyme activity reflects the change of nitrogen to phospho-rus limitation of microorganisms during vegetation restoration in semi-arid sandy land of northern China. Frontiers in Environmental Science, 2023, 11: 1298027 [22] 彭文英, 张科利, 杨勤科. 黄土坡面土壤性质随退耕时间的动态变化研究. 干旱区资源与环境, 2006, 20(5): 153-158 [23] 何文强, 陈林, 庞丹波, 等. 枯落物输入改变对森林生态系统土壤理化性质的影响. 生态学报, 2024, 44(4): 1755-1763 [24] Lambers H, Clements JC, Nelson MN. How a phosphorus-acquisition strategy based on carboxylate exudation po-wers the success and agronomic potential of lupines (Lupinus, Fabaceae). American Journal of Botany, 2013, 100: 263-288 [25] Shen J, Li H, Neumann G, et al. Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Science, 2005, 168: 837-845 [26] 杜娟, 黄海霞, 姚志勇, 等. 不同恢复年限对柠条林地土壤养分含量和酶活性的影响. 草原与草坪, 2023, 43(1): 100-107 [27] Yang W, Zhang D, Cai XW, et al. Natural revegetation over 160 years alters carbon and nitrogen sequestration and stabilization in soil organic matter on the Loess Pla-teau of China. Catena, 2023, 220: 106647 [28] 邰继承, 张丽妍, 杨恒山. 种植年限对紫花苜蓿栽培草地草产量及土壤氮、磷、钾含量的影响. 草业科学, 2009, 26(12): 82-86 [29] 周汉昌, 马安周, 刘国华, 等. 冰川消退带微生物群落演替及生物地球化学循环. 生态学报, 2018, 38(24): 9021-9033 [30] 何俊波, 吴艳宏. 利用土壤时间序列开展土壤磷的动态变化研究: 进展和展望. 山地学报, 2022, 40(6): 801-810 [31] Feng XM, Fu BJ, Lu N, et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China's Loess Plateau. Scientific Reports, 2013, 3: 2846 [32] 田静, 盛茂银, 汪攀, 等. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响. 环境科学, 2019, 40(9): 4278-4286 [33] Tian HQ, Chen GS, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151 [34] 马任甜. 黄土高原刺槐、柠条人工林土壤-植物生态化学计量特征研究. 硕士论文. 杨凌: 西北农林科技大学, 2017 [35] Qu Q, Wang Z, Gan Q, et al. Impact of drought on soil microbial biomass and extracellular enzyme activity. Frontiers in Plant Science, 2023, 14: 1221288 [36] Wang JP, Chen GR, Ji SH, et al. Close relationship between the gene abundance and activity of soil extracellular enzyme: Evidence from a vegetation restoration chronosequence. Soil Biology and Biochemistry, 2023, 177: 108929 [37] Yang HC, Zhang FH, Chen Y, et al. Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability, 2016, 8: 1183 [38] 闫成龙, 薛悦, 王艺菲, 等. 秦岭中段不同恢复阶段弃耕农田植物多样性变化及其驱动因素. 环境科学, 2024, 45(2): 992-1003 [39] Xue Y, Kang HB, Cui YX, et al. Consistent plant and microbe nutrient limitation patterns during natural vegetation restoration. Frontiers in Plant Science, 2022, 13: 885984 [40] Fanin N, Moorhead D, Bertrand I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient. Biogeochemistry, 2016, 129: 21-36 [41] Wu Y, Chen WJ, Li Q, et al. Ecoenzymatic stoichio-metry and nutrient limitation under the natural secondary succession of vegetation on the Loess Plateau, China. Land Degradation and Development, 2020, 32: 399-409 [42] Zhang JY, Yang XM, Song YH, et al. Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau: Ecological stoichiometry. Geoderma, 2020, 361: 114108 [43] Xu MP, Li WJ, Wang JY, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 815: 152918 [44] 王美娟, 段文标, 陈立新, 等. 模拟氮磷沉降和凋落物处理对红松林土壤全氮和有机氮的影响. 中国水土保持科学, 2022, 20(5): 56-65 [45] Sun QY, Liu Y, Liu HB, et al. Interaction of biochar type and rhizobia inoculation increases the growth and biological nitrogen fixation of Robinia pseudoacacia seedlings. Forests, 2020, 11: 711 [46] 傅伯杰, 马克明, 周华峰, 等. 黄土丘陵区土地利用结构对土壤养分分布的影响. 科学通报, 1998, 43(22): 2444-2448 [47] Xu ZW, Yu GR, Zhang XY, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 2017, 104: 152-163 [48] Van Groenigen KJ, Six J, Hungate BA, et al. Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 6571-6574 [49] Maspolim Y, Zhou Y, Guo CH, et al. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresource Technology, 2015, 190: 289-298 [50] Deejay M, Thomas G, Yakov K. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena, 2017, 149: 385-393 |