[1] Song W, Liu XY, Hu CC, et al. Important contributions of non-fossil fuel nitrogen oxides emissions. Nature Communications, 2021, 12: 243 [2] Tan JN, Su H, Itahashi S, et al. Quantifying the wet deposition of reactive nitrogen over China: Synthesis of observations and models. Science of the Total Environment, 2022, 851: 158007 [3] Lu CQ, Tian HQ, Liu ML, et al. Effect of nitrogen depo-sition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecological Appli-cations, 2012, 22: 53-75 [4] 段娜, 李清河, 多普增, 等. 植物响应大气氮沉降研究进展. 世界林业研究, 2019, 32(4): 6-11 [5] 张珂, 厉萌萌, 何明珠. 基于CiteSpace和HistCite的生态化学计量学国内外文献特征与研究热点分析. 生态科学, 2021, 40(5): 195-205 [6] 王飞, 白青蒙, 曹秀文, 等. 甘南白龙江3种次生林叶片-凋落物-土壤生态化学计量特征. 中南林业科技大学学报, 2023, 43(12): 116-125 [7] 肖思颖, 付芳伟, 李江荣, 等. 色季拉山6种典型林型土壤生态化学计量特征. 中南林业科技大学学报, 2023, 43(11): 120-130, 172 [8] 王书丽, 黄立君, 袁希, 等. 氮添加和升温对杉木林凋落物分解及碳氮磷化学计量特征的影响. 生态学杂志, 2020, 39(9): 2842-2850 [9] 曹芹, 邱新彩, 刘欣, 等. 不同间伐强度对华北落叶松人工林土壤养分-微生物生物量-胞外酶化学计量的影响. 中南林业科技大学学报, 2022, 42(4): 83-92 [10] Huang XL, Chen JZ, Wang D, et al. Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China. Scientific Reports, 2021, 11: 1748 [11] 廖珂, 沈芳芳, 刘文飞, 等. 长期氮沉降下杉木人工林凋落物与土壤的C、N、P化学计量特征. 广西植物, 2020, 40(11): 1551-1562 [12] Liu XC, Lamb EG, Zhang ST. Nitrogen addition impacts on soil microbial stoichiometry are driven by changes in plant resource stoichiometry not by the composition of main microbial groups in an alpine meadow. Biology and Fertility of Soils, 2020, 56: 261-271 [13] Zhang JY, Ai ZM, Liang CT, et al. How microbes cope with short-term N addition in a Pinus tabuliformis forest: Ecological stoichiometry. Geoderma, 2019, 337: 630-640 [14] Zhou ZH, Wang CK, Zheng MH, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 2017, 115: 433-441 [15] Ma SH, Chen GP, Tang WG, et al. Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropi-cal forests. Plant and Soil, 2021, 460: 453-468 [16] Li ZY, Qiu XR, Sun Y, et al. C:N:P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest. Science of the Total Environment, 2021, 796: 148925 [17] Ren CJ, Chen J, Lu XJ, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 2018, 116: 4-10 [18] Cui YX, Fang LC, Guo XB, et al. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 2019, 648: 388-397 [19] Sinsabaugh RL, Hill BH, Shah JJF, et al. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798 [20] 侯芳, 王克勤, 宋娅丽, 等. 滇中亚高山5种典型森林乔木层生物量及碳储量分配格局. 水土保持研究, 2018, 25(6): 29-35 [21] 刁婵, 鲁显楷, 田静, 等. 长期氮添加对亚热带森林土壤微生物碳源代谢多样性的影响. 生态学报, 2019, 39(18): 6622-6630 [22] 周世兴, 邹秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响. 应用生态学报, 2017, 28(1): 12-18 [23] 周慧娴, 沈傲, 崔寅平, 等. 区域氮干沉降分布特征的数值模拟. 环境科学学报, 2022, 42(10): 129-137 [24] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [25] 吴金水, 林美启, 黄巧云, 等. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2011: 54-88 [26] 王丽君, 程瑞梅, 肖文发, 等. 氮添加对三峡库区马尾松-栓皮栎混交林土壤微生物生物量和酶活性的影响. 应用生态学报, 2022, 33(1): 42-50 [27] Lou HQ, Yu JL, Li RX, et al. Microbial biomass C:N:P as a better indicator than soil and ecoenzymatic C:N:P for microbial nutrient limitation and C dynamics in Zoige Plateau peatland soils. International Biodeterioration and Biodegradation, 2022, 175: 105492 [28] 简尊吉, 倪妍妍, 徐瑾, 等. 马尾松人工林土壤碳氮磷生态化学计量学特征的纬度变化. 林业科学研究, 2022, 35(2): 1-8 [29] 李志聪, 何莉蓉, 吴阳, 等. 氮添加对人工油松林土壤碳组分的影响. 水土保持研究, 2018, 25(4): 54-59 [30] 李春越, 苗雨, 薛英龙, 等. 长期施肥黄土旱塬农田土壤-微生物-植物系统碳氮磷生态化学计量特征. 生态学报, 2022, 42(1): 370-378 [31] Fang YT, Zhu WX, Gundersen P, et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems, 2009, 12: 33-45 [32] 肖华翠, 李靖雯, 夏允, 等. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素. 应用生态学报, 2021, 32(1): 16-22 [33] Vitousek PM, Porder S, Houlton BZ, et al. Terrestrial phosphorus limitation: Mechanisms implications and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15 [34] Bui EN, Henderson BL. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 2013, 373: 553-568 [35] 崔雪, 王海燕, 邹佳何, 等. 长白山针阔混交林凋落物-土壤生态化学计量特征. 林业科学研究, 2023, 36(3): 91-99 [36] Sun Y, Wang CT, Chen HYH, et al. Asymmetric responses of terrestrial C:N:P stoichiometry to precipita-tion change. Global Ecology and Biogeography, 2021, 30: 1724-1735 [37] Xu HW, Qu Q, Li GW, et al. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation. Soil Biology and Bioche-mistry, 2022, 174: 108834 [38] Tian HQ, Chen GS, Zhang C, et al. Pattern and variation of C:N:P ratios in China' s soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151 [39] 王全成, 郑勇, 宋鸽, 等. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响. 生态学报, 2021, 41(15): 6245-6256 [40] Jia XY, Zhong YQW, Liu J, et al. Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 2020, 366: 114256 [41] Chen C, Chen XL, Chen HYH. Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems. Geoderma, 2023, 433: 116429 [42] Tian D, Du EZ, Jiang L, et al. Responses of forest ecosystems to increasing N deposition in China: A critical review. Environmental Pollution, 2018, 243: 75-86 [43] 单文俊, 邢亚娟, 闫国永, 等. 长白山天然次生林土壤微生物量对氮沉降的响应. 生态学报, 2018, 38(17): 5996-6005 [44] Zhao F, Yu HL, Li CH, et al. Soil microbial biomass C:N:P stoichiometry is driven more by climate, soil properties and plant traits than by N enrichment in a desert steppe. Catena, 2022, 216: 106402 [45] Malik AA, Martiny JBH, Brodie EL, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME Journal, 2020, 14: 1-9 [46] 栾历历, 刘恩媛, 顾新, 等. 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响. 生态学报, 2020, 40(24): 9220-9233 [47] Sinsabaugh RL, Carreiro MM, Repert DA, et al. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 2002, 60: 1-24 [48] Hobbie SE, Eddy WC, Buyarski CR, et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 2012, 82: 389-405 [49] Jing H, Wang J, Wang GL, et al. Enzyme activities of rhizosphere soil with different root diameters had varied responses to N deposition in Pinus tabuliformis forest. Forest Ecology and Management, 2023, 548: 121396 [50] Sinsabaugh RL, Turner BL, Talbot JM, et al. Stoichio-metry of microbial carbon use efficiency in soils. Ecolo-gical Monographs, 2016, 86: 172-189 [51] Dong CC, Wang W, Liu HY, et al. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecological Indicators, 2019, 101: 453-464 [52] 王强, 耿增超, 许晨阳, 等. 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响. 环境科学, 2020, 41(5): 2425-2433 [53] 刘西军, 蔡天培, 杜杰, 等. 氮添加和采脂对湿地松林土壤酶活性及酶化学计量比的影响. 生态学杂志, 2022, 41(2): 227-235 [54] Marklein AR, Houlton BZ. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 2012, 193: 696-704 |