[1] Tedersoo L, Bahram M, Põlme S. Global diversity and geography of soil fungi. Science, 2014, 346: 1078-1088 [2] Nilsson RH, Anslan S, Bahram M. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 2018, 17: 95-109 [3] Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 2018, 220: 1108-1115 [4] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367: eaba1223 [5] 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007 [6] Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18: 649-660 [7] Peterson RL, Massicotte HB, Melville LH. Mycorrhizas: Anatomy and Cell Biology. Wallingford: CABI Publishing, 2004 [8] Phillips RP, Brzostek E, Midgley MG. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 2013, 199: 41-51 [9] Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 2004, 82: 1243-1263 [10] Lin G, McCormack ML, Ma C. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytologist, 2017, 213: 1440-1451 [11] Ward EB, Duguid MC, Kuebbing SE, et al. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. New Phytologist, 2022, 235: 1701-1718 [12] Midgley MG, Phillips RP. Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition. Biogeochemistry, 2014, 117: 241-253 [13] Du E, Fenn ME, De Vries W, et al. Atmospheric nitrogen deposition to global forests: Status, impacts and management options. Environmental Pollution, 2019, 250: 1044-1048 [14] 郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应. 应用生态学报, 2020, 31(7): 2464-2472 [15] 宋鸽, 李晓杰, 王全成, 等. 杉木人工林土壤微生物生物量和碳源利用能力对模拟氮沉降和干旱的响应. 应用生态学报, 2022, 33(9): 2388-2396 [16] Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews, 2019, 94: 1857-1880 [17] Wang C, Liu D, Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 2018, 120: 126-133 [18] Midgley MG, Phillips RP. Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology, 2016, 97: 3369-3377 [19] Averill C, Dietze MC, Bhatnagar JM. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology, 2018, 24: 4544-4553 [20] Pan Y, Liu B, Cao J, et al. Enhanced atmospheric phosphorus deposition in Asia and Europe in the past two decades. Atmospheric and Oceanic Science Letters, 2021, 14: 100051 [21] He D, Xiang XJ, He JS, et al. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2016, 52: 1059-1072 [22] Maitra P, Zheng Y, Wang YL, et al. Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest. Biology and Fertility of Soils, 2021, 57: 685-697 [23] Zavišić A, Nassal P, Yang N, et al. Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biology and Biochemistry, 2016, 98: 127-137 [24] Eagar AC, Mushinski RM, Horning AL. Arbuscular mycorrhizal tree communities have greater soil fungal diversity and relative abundances of saprotrophs and pathogens than ectomycorrhizal tree communities. Applied and Environmental Microbiology, 2022, 88: e01782-21 [25] Zheng Y, Kim YC, Tian XF, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 2014, 89: 594-605 [26] 唐战胜, 李桥, 余建平, 等. 钱江源国家公园古田山珍稀濒危植物资源现状及分析. 植物科学学报, 2019, 37(2): 154-163 [27] 陈冬基, 施德法. 浙江省古田山自然保护区的森林植被类型. 浙江林学院学报, 1986, 3(2): 1-8 [28] Bruelheide H, Böhnke M, Both S, et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2010, 81: 25-41 [29] 王全成, 郑勇, 宋鸽, 等. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响. 生态学报, 2021, 41(15): 6245-6256 [30] Yang H, Yang ZJ, Wang QC, et al. Compartment and plant identity shape tree mycobiome in a subtropical forest. Microbiology Spectrum, 2022, 10: e01347-22 [31] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2007 [32] Taylor DL, Walters WA, Lennon NJ, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology, 2016, 82: 7217-7226 [33] 马垒, 赵文慧, 郭志彬, 等. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响. 生态学报, 2019, 39(11): 4158-4167 [34] Güsewell S, Gessner MO. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 2009, 23: 211-219 [35] Treseder KK, Allen MF. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytologist, 2002, 155: 507-515 [36] Yang Y, Zhang X, Hartley IP, et al. Contrasting rhizosphere soil nutrient economy of plants associated with arbuscular mycorrhizal and ectomycorrhizal fungi in karst forests. Plant and Soil, 2021, 470: 81-93 [37] 白浩楠, 牛香, 王兵, 等. 菌根真菌对森林碳氮磷循环影响的研究进展. 温带林业研究, 2020, 3(2): 22-26 [38] Jiang L, Tian D, Ma S, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Science of the Total Environment, 2018, 618: 1064-1070 [39] Adamo I, Castaño C, Bonet JA, et al. Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests. Soil Biology and Biochemistry, 2021, 160: 108320 [40] Tedersoo L, Anslan S, Bahram M, et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Frontiers in Microbiology, 2020, 11: 1953 [41] Ma S, Chen X, Su H, et al. Phosphorus addition decreases soil fungal richness and alters fungal guilds in two tropical forests. Soil Biology and Biochemistry, 2022, 175: 108836 [42] Swift MJ, Heal OW, Anderson JM. Decomposition in Terrestrial Ecosystems. Berkeley, CA, USA: University of California Press, 1979 [43] Tedersoo L, Jairus T, Horton BM, et al. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytologist, 2008, 180: 479-490 [44] Lofgren LA, Nguyen NH, Kennedy PG. Ectomycorrhizal host specificity in a changing world: Can legacy effects explain anomalous current associations? New Phytologist, 2018, 220: 1273-1284 |