[1] 邓书斌, 陈秋锦. 植被波谱特征与植被指数综述. 中国遥感应用协会2010年会暨区域遥感发展与产业高层论坛, 南京, 2010: 202-210 [2] Richardsons AJ, Wiegand A. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43: 1541-1552 [3] Gitelson AA, Merzlyak MN. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 1998, 22: 689-692 [4] 徐道青, 刘小玲, 王维, 等. 淹水胁迫下棉花叶片高光谱特征及叶绿素含量估算模. 应用生态学报, 2017, 28(10): 3289-3296 [5] 敖登, 杨佳慧, 丁维婷, 等. 54种植被指数研究进展综述. 安徽农业科学, 2023, 51(1): 13-21 [6] 李昕. 对NOAA/AVHRR通道反照率和植被指数的大气影响订正试验. 气候与环境研究, 1998, 3(2): 85-96 [7] 邓守奇, 李晓强, 梁立恒, 等. 高光谱遥感植被图谱信息提取研究进展. 长春师范大学学报, 2024, 43(2): 124-127 [8] 覃文汉, 项月琴. 植被结构及太阳/观测角度对NDVI的影响. 环境遥感, 1996, 11(4): 285-290 [9] 孙中宇, 陈燕乔. 轻小型无人机低空遥感及其在生态学中的应用进展. 应用生态学报, 2017, 28(2): 528-536 [10] Pádua L, Marques P, Hruška J, et al. Vineyard properties extraction combining UAS-based RGB imagery with elevation data. International Journal of Remote Sensing, 2018, 39: 5377-5401 [11] 高永刚, 林悦欢, 温小乐, 等. 基于无人机影像的可见光波段植被信息识别. 农业工程学报, 2020, 36(3): 178-189 [12] Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 2012, 13: 693-712 [13] 李玉霞. 基于可见光航空影像的土地利用分类. 科技资讯, 2023, 21(16): 134-137 [14] 左璐, 王焕炯, 刘荣高, 等. 基于不同光谱指数的植被物候期遥感监测差异. 应用生态学报, 2018, 29(2): 599-606 [15] 李月. 光源相关色温及色偏差计算方法研究. 硕士论文. 辽宁鞍山: 辽宁科技大学, 2023 [16] 庄金迅. 光源的色温及其在照明设计中的应用. 灯与照明, 2007(3): 36-38 [17] Kusnandar T, Santoso J, Suredro K. The effect of white balance for color constancy on visible light. Proceedings of the 2023 12th International Conference on Software and Computer Applications, Kuantan, Malaysia, 2023: 23-35 [18] Lu Y, Song Z, Li Y, et al. A novel desert vegetation extraction and shadow separation method based on visible light images from unmanned aerial vehicles. Sustainability, 2023, 15: 2954 [19] 周涛, 胡振琪, 韩佳政, 等. 基 于无人机可见光影像的绿色植被提取. 中国环境科学, 2021, 41(5): 2380-2390 [20] 郑舒元, 海燕, 何孟琦, 等.高区分度的高分六号影像可见光波段植被指数构建. 光谱学与光谱分析, 2023, 43(11): 3509-3517 [21] Wei G, Zheng B, Tao D, et al. EasyPCC: Benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditions. Sensors, 2017, 17: 1-13 [22] Falkowski MJ, Gessler PE, Morgan P, et al. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest Ecology and Management, 2005, 217: 129-146 [23] Kawashima S. An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany, 1998, 81: 49-54 [24] Bendig J, Yu K, Aasen H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87 [25] Bellvert J, Zarco-Tejada PJ, Girona J, et al. Mapping crop water stress index in a ‘Pinot-noir' vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 2014, 15: 361-376 [26] Woebbecke DM, Meyer GE, Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 1995, 38: 259-269 [27] Gitelson AA, Kaufman YJ, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80: 76-87 [28] Padua L, Marques P, Hruska J, et al. Vineyard properties extraction combining UAS-based RGB imagery with elevation data. International Journal of Remote Sensing, 2018, 39: 5377-5401 [29] Hunt ER, Doraiswamy PC, Mcmurtrey JE, et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 103-112 [30] Richardson AD, Jenkins JP, Braswell BH, et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia, 2007, 152: 323-334 [31] Sun Z, Wang X, Wang Z, et al. UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. Journal of Plant Ecology, 2021, 14: 1003-1023 [32] 陈树新, 刘炳杰, 王海熠, 等. 结合可见光植被指数和分水岭算法的单木树冠信息提取. 遥感技术与应用, 2024, 39(1): 34-44 [33] Hasan U, Sawut M, Chen SS. Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability, 2019, 11: 6829 [34] Liu Y, Hatou K, Aihara T, et al. A robust vegetation index based on different UAV RGB images to estimate SPAD values of naked barley leaves. Remote Sensing, 2021, 13: 686 [35] 贺仓国, 佘冬立, 张翔, 等. 基于可见光影像分析的黄土高原小流域植被指数研究. 农业现代化研究, 2022, 43(3): 504-512 [36] 王敏. 基于色温估计自动白平衡算法研究与实现. 博士论文. 天津: 天津大学, 2012 [37] 胡乘风, 陈巧玲, 乔雪涛, 等. 阔叶红松林主要树种光合与光谱反射特性及初级生产力研究. 北京林业大学学报, 2020, 42(5): 12-24 [38] 邵文静, 孙伟伟, 杨刚. 高光谱遥感影像纹理特征提取的对比分析. 遥感技术与应用, 2021, 36(2): 431-440 [39] 董俊鹏. 基于光照分析的颜色恒常性算法研究. 博士论文. 合肥: 合肥工业大学, 2015 [40] 郝静如, 冯华君, 刘木清. 基于最优解的数字成像系统色彩校正方法.复旦学报: 自然科学版, 2010, 49(3): 384-388 [41] Svensgaard J, Jensen SM, Christensen S, et al. The importance of spectral correction of UAV-based phenotyping with RGB cameras. Field Crops Research, 2021, 269: 108177 |