[1] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 2019, 49(9): 1321-1334 [2] 于水, 张晓龙, 刘志娟, 等. 1961—2020年松花江流域极端气候指数的时空变化特征. 应用生态学报, 2023, 34(4): 1091-1101 [3] 王鑫, 王明田, 冯勇, 等. 2001—2020年川西北高原归一化植被指数演变特征及其对极端气候的响应. 应用生态学报, 2022, 33(7): 1957-1965 [4] 刘海红, 殷淑燕, 许丽婷, 等. 山东省极端气候和人类活动对不同植被类型NDVI的影响. 生态学报, 2023, 43(21): 8780-8792 [5] Heino M, Kinnunen P, Anderson W, et al. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 2023, 13: 3583 [6] 安德帅, 徐丹丹, 濮毅涵, 等. 2000—2019年武夷山亚高山草甸对气候因子的响应及其时滞效应. 应用生态学报, 2021, 32(12): 4195-4202 [7] Lamchin M, Lee WK, Jeon SW, et al. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Science of the Total Environment, 2018, 618: 1089-1095 [8] Chu HS, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 2019, 650: 2051-2062 [9] Yin G, Hu ZY, Chen X, et al. Vegetation dynamics and its response to climate change in Central Asia. Journal of Arid Land, 2016, 8: 375-388 [10] Tucker CJ, Slayback DA, Pinzon JE, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 2001, 45: 184-190 [11] 葛非凡, 毛克彪, 蒋跃林, 等. 华东地区夏季极端高温特征及其对植被的影响. 中国农业气象, 2017, 38(1): 42-51 [12] 项子源, 王钧, 王伟民. 亚热带城市高温对城市生态系统碳通量的抑制作用研究. 生态环境学报, 2020, 29(9): 1810-1821 [13] 刘炜, 焦树林. 喀斯特流域极端气候变化特征及对NDVI的影响. 水土保持学报, 2022, 36(5): 220-232 [14] 韩丹丹. 黄土高原植被变化及其对极端气候的响应. 硕士论文. 北京: 中国科学院大学, 2020 [15] Gouveia CM, Trigo RM, Beguería S, et al. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 2017, 151: 15-27 [16] 赵安周, 张安兵, 赵延旭, 等. 基于MODISNDVI数据的陕甘宁地区植被覆盖时空变化及其对极端气候的响应. 水土保持研究, 2018, 25(3): 224-231 [17] 李茂华, 都金康, 李皖彤, 等. 1982—2015年全球植被变化及其与温度和降水的关系. 地理科学, 2020, 40(5): 823-832 [18] de Jong R, Schaepman ME, Furrer R, et al. Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 2013, 19: 1953-1964 [19] Ding YX, Li Z, Peng SZ. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102179 [20] He L, Guo JB, Yang WB, et al. Multifaceted responses of vegetation to average and extreme climate change over global drylands. Science of the Total Environment, 2023, 858: 159942 [21] Friedl M, Sulla-Menashe D. MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061. Merritt Island, FL, USA: NASA EOSDIS Land Processes Distributed Active Archive Center, 2022 [22] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估. 海洋气象学报, 2018, 38(1): 91-99 [23] Wang S, Fu BJ, Wei FL, et al. Drylands contribute disproportionately to observed global productivity increases. Science Bulletin, 2023, 68: 224-232 [24] 李阳阳, 董国涛, 薛华柱, 等. 1982—2020年黄河流域多时间尺度气象干旱对植被影响. 水土保持学报, 2024, 38(1): 187-196 [25] 葛建坤, 雷国相, 陈皓锐, 等. 基于SHAP重要性排序和机器学习算法的灌区渠道调度流量预测. 农业工程学报, 2023, 39(13): 113-122 [26] Bao ZX, Zhang JY, Wang GQ, et al. The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 2021, 124: 107443 [27] Wang YY, Chen X, Gao M, et al. The use of random forest to identify climate and human interference on vege-tation coverage changes in southwest China. Ecological Indicators, 2022, 144: 109463 [28] 吴欣宇, 朱秀芳. 中国不同植被区对极端气候的响应差异. 生态学报, 2023, 43(24): 10202-10215 [29] Guo ZJ, Lou W, Sun C, et al. Trend changes of the vegetation activity in northeastern East Asia and the connections with extreme climate indices. Remote Sensing, 2022, 14: 3151 [30] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013 [31] Hijioka Y, Lin E, Pereira JJ, et al. Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2014 [32] Nemani RR, Keeling CD, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560-1563 [33] Heino M, Kinnunen P, Anderson W, et al. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 2023, 13: 3583 [34] 刘盼, 赵西宁, 高晓东, 等. 黄土高原极端气温变化特征及其与平均气温的相关性. 应用生态学报, 2022, 33(7): 1975-1982 [35] 苏日罕, 郭恩亮, 王永芳, 等. 1982—2020年内蒙古地区极端气候变化及其对植被的影响. 生态学报, 2023, 43(1): 419-431 [36] 吴运力, 张钰, 田佳榕. 气候变化和人类活动对内蒙古高原不同植被类型NDVI的影响. 中国农业气象, 2023, 44(12): 1155-1168 |