[1] 张永, 杨自辉, 郭树江, 等. 基于遥感分析20年来民勤绿洲防护林带植被变化研究. 草业学报, 2018, 27(7): 14-24 [2] 岳奕帆, 陈国鹏, 王立, 等. 基于GEE平台的舟曲县1998—2019年植被覆盖变化分析. 草地学报, 2022, 30(6): 1534-1542 [3] 朱林富. 基于MODIS数据的四川植被覆盖度景观格局特征分析. 乐山师范学院学报, 2022, 37(4): 45-51 [4] Piao SL, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451: 49-52 [5] 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974 [6] Singh P, Sarkar CA, Verma P, et al. Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India. Geomatics, Natural Hazards and Risk, 2022, 13: 1762-1779 [7] Gemitzi A, Banti MΑ, Lakshmi V. Vegetation greening trends in different land use types: Natural variability versus human-induced impacts in Greece. Environmental Earth Sciences, 2019, 78: 172 [8] Wang FT, An PL, Huang C, et al. Is afforestation induced land use change the main contributor to vegetation dynamics in the semiarid region of North China? Ecolo-gical Indicators, 2018, 88: 282-291 [9] Zhao AZ, Zhang AB, Liu JH, et al. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena, 2019, 175: 446-455 [10] 刘宪锋, 杨勇, 任志远, 等. 2000—2009年黄土高原地区植被覆盖度时空变化. 中国沙漠, 2013, 33(4): 1244-1249 [11] Adami M, Bernardes S, Arai E, et al. Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. International Journal of Applied Earth Observation & Geoinformation, 2018, 69: 148-163 [12] Jamali S, JöNsson P, Eklundh L, et al. Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 2015, 156: 182-195 [13] Dardel C, Kergoat L, Hiernaux P, et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 2014, 140: 350-364 [14] Motohka T, Nasahara KN, Oguma H, et al. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2010, 2: 2369-2387 [15] Hmimina G, Dufrêne E, Pontailler JY, et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 2013, 132: 145-158 [16] Xu GC, Zhang JX, Li P, et al. Vegetation restoration projects and their influence on runoff and sediment in China. Ecological Indicators, 2018, 95: 233-241 [17] Guo JT, Wang KB, Wang TJ, et al. Spatiotemporal variation of vegetation NDVI and its climatic driving forces in global land surface. Polish Journal of Environmental Studies, 2022, 31: 3541-3549 [18] Prvlie R, Srodoev I, Nita IA, et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987-2018. Ecological Indicators, 2022, 136: 108629 [19] Ghebrezgabher MG, Yang T, Yang X, et al. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egyptian Journal of Remote Sensing and Space Science, 2020, 23: 249-261 [20] Sardina LC, Irisarri G, Texeira M. Climate factors rather than human activities controlled NDVI trends across wet meadow areas in the Andes Centrales of Argentina. Journal of Arid Environments, 2023, 214: 104983 [21] Yang SK, Liu J, Wang CH, et al. Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin, central China. Ecological Indicators, 2022, 145: 109586 [22] Ren YT, Zhang F, Zhao CL, et al. Attribution of climate change and human activities to vegetation NDVI in Jilin Province, China during 1998-2020. Ecological Indicators, 2023, 153: 110415 [23] 赵楠, 赵颖慧, 邹海凤, 等. 1990—2020年黑龙江省植被覆盖度的时空变化趋势及驱动力. 应用生态学报, 2023, 34(5): 1320-1330 [24] 李京忠, 辛振华, 谢潇, 等. 半干旱区植被覆盖时空变化特征及对气候变化的响应:以锡林郭勒盟为例. 应用生态学报, 2024, 35(1): 80-86 [25] Dang YC, He HS, Zhao DD, et al. Quantifying the relative importance of climate change and human activities on selected wetland ecosystems in China. Sustainability, 2020, 12: 912 [26] 潘华盛, 张桂华, 徐南平. 20世纪80年代以来黑龙江气候变暖的初步分析. 气候与环境研究, 2003, 8(3): 348-355 [27] Han HZ, Bai JJ, Ma G, et al. Vegetation phenological changes in multiple landforms and responses to climate change. ISPRS International Journal of Geo-Information, 2020, 9: 111 [28] Yu LX, Liu TX, Bu K, et al. Monitoring the long-term vegetation phenology changes in Northeast China from 1982 to 2015. Scientific Reports, 2017, 7: 1-9 [29] Wang XW, Zhu Y, Chen YN, et al. Influences of forest on MODIS snow cover mapping and snow variations in the Amur River Basin in Northeast Asia during 2000-2014. Hydrological Processes, 2017, 31: 3225-3241 [30] 黄跃飞, 李铁键, 吕恩泽, 等. 黑龙江流域. 全球变化数据学报, 2017(1): 2 [31] 程红芳, 章文波, 陈锋. 植被覆盖度遥感估算方法研究进展. 国土资源遥感, 2008(1): 13-18 [32] 邵霜霜, 师庆东. 基于FVC的新疆植被覆盖度时空变化. 林业科学, 2015, 51(10): 35-42 [33] 沈贝贝, 魏一博, 马磊超, 等. 内蒙古草原植被覆盖度时空格局变化及驱动因素分析. 农业工程学报, 2022, 38(12): 118-126 [34] 吴运力, 张钰, 田佳榕. 气候变化和人类活动对内蒙古高原不同植被类型NDVI的影响. 中国农业气象, 2023, 44(12): 1155-1168 [35] Giglio L, Randerson JT, Van der Werf GR. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 2003, 118: 317-328 [36] Chu HS, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 2019, 650: 2051-2062 [37] Liu Y, Wang XF, Guo M, et al. Spatial and temporal relationships among NDVI, climate factors, and land cover changes in Northeast Asia from 1982 to 2009. GIScience & Remote Sensing, 2011, 48: 371-393 [38] Guo JT, Hu YM, Xiong ZP, et al. Spatiotemporal variations of growing-season NDVI associated with climate change in Northeastern China's Permafrost Zone. Polish Journal of Environmental Studies, 2017, 26: 73665311 [39] 杜佳梦, 包刚, 佟斯琴, 等. 1982—2015年蒙古国植被覆盖变化及其与气候变化和人类活动的关系. 草业学报, 2021, 30(2): 1-13 [40] 张扬. 黑龙江流域植被覆盖的时空变化特征. 黑龙江环境通报, 2022, 35(4): 132-135 [41] 卢乔倩, 江涛, 柳丹丽, 等. 中国不同植被覆盖类型NDVI对气温和降水的响应特征. 生态环境学报, 2020, 29(1): 23-34 [42] 张学珍. 1982—2011年北半球中纬度秋季植被绿度变化的主要模态. 地理科学, 2014, 34(10): 1226-1232 [43] 秦福莹, 那音太. 近20年蒙古国植被春季返青期时空变化特征. 赤峰学院学报:自然科学版, 2023, 39(1): 1-4 [44] Veraverbeke S, Rogers BM, Goulden ML, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7: 529-534 [45] Wu C, Venevsky S, Sitch S, et al. Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 2017, 8: e01917 |