[1] Costanza R. Valuing natural capital and ecosystem ser-vices toward the goals of efficiency, fairness, and sustainability. Ecosystem Services, 2020, 43: 101096 [2] Palomo I, Felipe-Lucia MR, Bennett EM, et al. Disentangling the pathways and effects of ecosystem service co-production. Advances in Ecological Research, 2016, 54: 245-283 [3] Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Washington, DC: Island Press, 2005 [4] Bhaskaran K, Dos-Santos-Silva I, Leon DA, et al. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes & Endocrinology, 2018, 6: 944-953 [5] Liu YX, Liu SL, Sun YX, et al. Effect of grazing exclusion on ecosystem services dynamics, trade-offs and synergies in Northern Tibet. Ecological Engineering, 2022, 179: 106638 [6] Huang MY, Fang B, Yue WZ, et al. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995-2017. Geographi-cal Research, 2019, 38: 2790-2803 [7] Nabavi-Pelesaraei A, Rafiee S, Mohammadkashi N, et al. Principle of life cycle assessment and cumulative exergy demand for biodiesel production: Farm-to-combustion approach//Amidpour M, Ebadollahi M, Jabari F, eds. Synergy Development in Renewables Assisted Multi-carrier Systems. Cham, Switzerland: Springer International Publishing, 2022: 127-169 [8] 王若茹, 李小马, 甘德欣, 等. 湖南省2002—2020年植被动态演变特征及影响因子. 应用生态学报, 2024, 35(5): 1312-1320 [9] 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素. 生态环境学报, 2023, 32(6): 1140-1148 [10] 张自正, 张蕾, 孙桂英, 等. 清江流域生态系统服务权衡时空效应及驱动因素. 应用生态学报, 2023, 34(4): 1051-1062 [11] Khanali M, Ghasemi-Mobtaker H, Varmazyar H, et al. Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production. Energy, 2022, 250: 123822 [12] Li W, Migliavacca M, Forkel M, et al. Widespread increasing vegetation sensitivity to soil moisture. Nature Communications, 2022, 13: 3959 [13] Piao SL, Wang XH, Park T, et al. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1: 14-27 [14] Tang ZX, Zhou ZX, Wang D, et al. Impact of vegetation restoration on ecosystem services in the Loess Pla-teau, a case study in the Jinghe Watershed, China. Ecological Indicators, 2022, 142: 109183 [15] 张博, 刘长星, 王璇. 陕北黄土高原植被覆盖时空变化及其归因分析. 测绘通报, 2022(8): 22-29 [16] 孙从建, 张文强, 李新功, 等. 基于遥感影像的黄土高原沟壑区生态效应评价. 农业工程学报, 2019, 35(12): 165-172 [17] 韩磊, 曹鑫鑫, 朱会利, 等. 基于特征分区的陕北黄土高原植被覆盖变化及其驱动因素. 生态学报, 2023, 43(20): 8564-8577 [18] 叶璇, 康帅直, 赵永华, 等. 陕北黄土高原植被恢复与生态系统服务的时空关系. 应用生态学报, 2022, 33(10): 2760-2768 [19] 黄麟, 曹巍, 祝萍. 退耕还林还草工程生态效应的地域分异特征. 生态学报, 2020, 40(12): 4041-4052 [20] 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974 [21] Shen JS, Li SC, Liu LB, et al. Uncovering the relationships between ecosystem services and social-ecological drivers at different spatial scales in the Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 2021, 290: 125193 [22] Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity. Science, 2020, 367: 787-790 [23] 张轩畅, 刘彦随, 李裕瑞, 等. 黄土丘陵沟壑区乡村生态产业化机理及其典型模式. 资源科学, 2020, 42(7): 1275-1284 [24] Wang S, Fu BJ, Piao SL, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016, 9: 38-41 [25] 金钊. 走进新时代的黄土高原生态恢复与生态治理. 地球环境学报, 2019, 10(3): 316-322 [26] 汪奎, 韩强, 方玉川, 等. 榆林南部旱地马铃薯新品种比较试验. 中国马铃薯, 2022, 36(1): 20-26 [27] Chen ZQ, Yu B, Yang C, et al. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth System Science Data, 2021, 13: 889-906 [28] 黄云鑫, 刘彦随, 刘正佳. 黄土丘陵沟壑区现代沟道农业及其可持续发展. 地理科学, 2023, 43(1): 130-141 [29] Ma S, Wang LJ, Jiang J, et al. Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the Qinghai-Tibet Plateau ecological shelter. Journal of Cleaner Production, 2021, 318: 128592 [30] Zhang X, Zhang GS, Long X, et al. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecological Indicators, 2021, 132: 108304 [31] Jia ZX, Wang XF, Feng XM, et al. Exploring the spatial heterogeneity of ecosystem services and influencing factors on the Qinghai Tibet Plateau. Ecological Indicators, 2023, 154: 110521 [32] Cao SX, Lu CX, Yue H. Optimal tree canopy cover during ecological restoration: A case study of possible ecological thresholds in Changting, China. BioScience, 2017, 67: 221-232 [33] 邵雅静, 杨悦, 员学锋. 黄河流域城镇化与生态系统服务的时空互动关系. 水土保持学报, 2022, 36(3): 86-93 [34] Chen ZQ, Yu SY, You XJ, et al. New nighttime light landscape metrics for analyzing urban-rural differentiation in economic development at township: A case study of Fujian Province, China. Applied Geography, 2023, 150: 102841 [35] 邓楚雄, 朱大美, 李忠武, 等. 湘中丘陵区农业生态系统服务价值与城镇化水平弹性关系研究. 中国生态农业学报, 2021, 29(8): 1453-1466 [36] 冯俊华, 张路路. 陕西省新型城镇化与生态环境协调度研究. 生态学报, 2022, 42(11): 4617-4629 [37] Pearson RG, Phillips SJ, Loranty MM, et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 2013, 3: 673-677 [38] Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 2002, 259: 254-271 [39] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 2013, 100: 172-182 [40] Zhang JX, Liu K, Wang M. Seasonal and interannual variations in China’s groundwater based on GRACE data and multisource hydrological models. Remote Sensing, 2020, 12: 845 [41] Wang JR, Chen X, Hu Q, et al. Responses of terrestrial water storage to climate variation in the Tibetan Plateau. Journal of Hydrology, 2020, 584: 124652 [42] 夏楚瑜, 国淏, 赵晶, 等. 京津冀地区生态系统服务对城镇化的多空间尺度动态响应. 生态学报, 2023, 43(7): 2756-2769 [43] 关靖云, 李东, 王亚菲, 等. 中国区域DMSP-OLS与NPP-VIIRS夜间灯光影像校正. 测绘通报, 2021(9): 1-8 [44] 金钊. 黄土高原小流域退耕还林还草的生态水文效应与可持续性. 地球环境学报, 2022, 13(2): 121-131 [45] 梁东, 于学峰, 徐国强, 等. 黄河流域生态保护高质量发展背景下全域土地综合整治规范化助力乡村振兴路径探索. 山东国土资源, 2023, 39(11): 78-82 [46] Niu LN, Shao QQ, Ning J, et al. Ecological changes and the tradeoff and synergy of ecosystem services in western China. Journal of Geographical Sciences, 2022, 32: 1059-1075 [47] Talukdar S, Singha P, Mahato S, et al. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic Plain of India. Ecological Indicators, 2020, 112: 106121 [48] Hasan SS, Zhen L, Miah MG, et al. Impact of land use change on ecosystem services: A review. Environmental Development, 2020, 34: 100527 [49] Li ZH, Bai YQ, Sun JL, et al. Ecological civilization construction in ecologically fragile poverty-stricken areas in Western China. Strategic Study of Chinese Academy of Engineering, 2019, 21: 80-86 [50] Bai JZ, Zhou ZX, Zou YF, et al. Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. ISPRS International Journal of Geo-Information, 2021, 10: 43 [51] Fu BJ, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45: 223-243 [52] Shao MA, Wang YQ, Xia YQ, et al. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: A review. Vadose Zone Journal, 2018, 17: 1-8 |