欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (9): 2845-2852.doi: 10.13287/j.1001-9332.202509.024

• 研究论文 • 上一篇    下一篇

基于塔基高光谱观测数据和机器学习方法的气溶胶光学厚度估算

左宇鑫1,2,3, 刘新杰1,3*, 竞霞2, 谭俊磊4, 刘良云1,3   

  1. 1中国科学院空天信息创新研究院, 数字地球重点实验室, 北京 100094;
    2西安科技大学测绘科学与技术学院, 西安 710054;
    3可持续发展大数据国际研究中心, 北京 100094;
    4中国科学院西北生态环境资源研究院, 冰冻圈科学与冻土工程重点实验室, 黑河遥感试验研究站, 兰州 730000
  • 收稿日期:2025-01-10 接受日期:2025-07-01 出版日期:2025-09-18 发布日期:2026-04-18
  • 通讯作者: *E-mail: liuxj@radi.ac.cn
  • 作者简介:左宇鑫,男,1999年生,硕士研究生。主要从事植被定量遥感研究。E-mail:zuoyuxin072406@163.com
  • 基金资助:
    国家重点研发计划青年科学家项目(2022YFF1301900)

Estimation of aerosol optical depth based on tower-based hyperspectral observations and machine learning methods

ZUO Yuxin1,2,3, LIU Xinjie1,3*, JING Xia2, TAN Junlei4, LIU Liangyun1,3   

  1. 1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;
    3International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China;
    4Key Laboratory of Cryosphere Science and Frozen Soil Engineering, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2025-01-10 Accepted:2025-07-01 Online:2025-09-18 Published:2026-04-18

摘要: 气溶胶光学厚度(AOD)是表征大气中气溶胶颗粒散射和吸收特性的关键参数。在塔基生态遥感观测中,获取准确的AOD以量化气溶胶的散射和吸收作用对光谱观测数据的定量化处理至关重要。本研究提出一种基于塔基高光谱观测数据和机器学习的AOD反演方法。首先,基于大气辐射传输模型分析太阳辐照度对AOD变化的敏感性及其光谱特征。然后,选取785和665 nm波段的辐照度(E785E665),通过构建双通道比值指数(E785/E665)可以敏感追踪AOD的变化。最后,系统评估了3种机器学习模型(随机森林、支持向量机和人工神经网络)的反演精度。结果表明: 基于塔基高光谱观测数据的3种机器学习模型估算的AOD均表现出较高的精度,决定系数分别为0.950、0.936、0.947,均方根误差分别为0.025、0.028、0.027,平均绝对误差分别为0.017、0.020、0.019,其中,随机森林模型表现最佳。机器学习方法有潜力在不需要额外辅助数据的情况下从太阳辐照度光谱数据中准确估算AOD,能够为塔基平台大气校正方法提供可靠、同步的AOD估算数据。

关键词: 气溶胶光学厚度, 机器学习, 塔基高光谱观测, 大气校正

Abstract: Aerosol optical depth (AOD) is a key parameter reflecting the scattering and absorption characteristics of aerosol particles in the atmosphere. In tower-based ecological remote sensing observation, obtaining accurate AOD is crucial for quantifying the scattering and absorption effects of aerosols on the quantitative processing of spectral observation data. We developed an AOD retrieval method based on tower-based hyperspectral observation data and machine learning. Firstly, based on the atmospheric radiative transfer model, we analyzed the sensitivity of solar irradiance to AOD variations and its spectral characteristics. Then, we selected the 785 and 665 nm bands irradiance (E785 and E665), and constructed a dual-channel ratio index (E785/E665) to sensitively track the variations of AOD. Finally, we systematically evaluated the retrieval accuracy of three machine learning models (random forest, support vector machine and artificial neural network). The results showed that the AOD estimated from the three machine learning models based on tower-based hyperspectral observation data all demonstrated high accuracy, with coefficients of determination of 0.950, 0.936, and 0.947; root mean square errors of 0.025, 0.028, and 0.027; and mean absolute errors of 0.017, 0.020, and 0.019, respectively. The random forest model achieved the best performance among the three models. Machine learning methods have the potential to accurately estimate AOD from solar irradiance spectral data without the need for additional auxiliary data, which can provide reliable and synchronous AOD estimation data for the atmospheric correction methods of the tower-based platform.

Key words: aerosol optical depth, machine learning, tower-based hyperspectral observation, atmospheric correction