欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 2171-2182.doi: 10.13287/j.1001-9332.202507.023

• 研究论文 • 上一篇    下一篇

机器学习视角下四川省水供给服务驱动要素识别

黄扬1*, 王多聪1, 欧阳晗黎2, 韩建勋2, 庄春义1   

  1. 1四川省水利科学研究院, 成都 610000;
    2中国电信股份有限公司四川分公司, 成都 610000
  • 收稿日期:2024-12-16 接受日期:2025-05-09 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: scsky_hy@163.com
  • 作者简介:黄 扬, 女, 1992年生, 硕士研究生。主要从事水资源与环境、水利信息化研究。E-mail: scsky_hy@163.com
  • 基金资助:
    四川省自然科学基金项目(24NSFSC3892)、四川省水利科研专项(SKY-2024-JSFW-17)和四川省科技厅基本科研业务费项目(2022-SKY-ZXKY-7)

Identification of driving factors for water supply service in Sichuan Province, Southwest China from a machine learning perspective

HUANG Yang1*, WANG Duocong1, OUYANG Hanli2, HAN Jianxun2, ZHUANG Chunyi1   

  1. 1Sichuan Research Institute of Water Conservancy, Chengdu 610000, China;
    2China Telecom Corporation Sichuan Branch, Chengdu 610000, China
  • Received:2024-12-16 Accepted:2025-05-09 Online:2025-07-18 Published:2026-01-18

摘要: 厘清水供给服务的时空变化及驱动机制对四川省水资源可持续管理和生态系统可持续发展具有重要的指导意义。利用InVEST模型产水模块描绘四川省2000、2005、2010、2015及2020年产水量的时空分布,选取年降水量、年度潜在蒸散发量、年均气温、土壤类型、土地利用类型、归一化植被指数、数字高程模型、坡度及国内生产总值共9个驱动因子,结合全局空间自相关和XGBoost-SHAP模型,对四川省产水量的时空变化及驱动要素进行识别。结果表明: 2000—2020年间,四川省年均产水量呈现出上升-下降-上升的“N”型动态变化趋势,在2020年达到峰值(5.75×105 m3)。研究区产水量表现出明显的东高西低格局,高值区主要集中在成都西南部、雅安东部、眉山和乐山等地,且随时间变化,高值区逐渐覆盖四川省的东南部。年降水量对四川地区产水量变化具有最大贡献度;年降水量与年度潜在蒸散发量交互作用直接决定了产水量的产生和变化,是研究区最重要的交互主导因子。本研究证实了XGBoost-SHAP模型在揭示驱动因子对产水量的非线性影响方面的有效性,能够更直接、清晰地识别关键驱动因子。

关键词: 机器学习, 水供给服务, XGBoost-SHAP模型, 驱动机制

Abstract: Clarifying the spatiotemporal variations and driving mechanisms of water supply services holds significant guiding implications for the sustainable management of water resources and the sustainable development of ecosystems in Sichuan Province. We used the InVEST model’s water yield module to map spatiotemporal distributions of water yield in Sichuan for the years 2000, 2005, 2010, 2015, and 2020. We selected nine driving factors, including annual precipitation, annual potential evapotranspiration, annual average temperature, soil type, land use type, normalized difference vegetation index, digital elevation model, slope, and gross domestic product. Combined with global spatial autocorrelation and the XGBoost-SHAP model, we identified the spatiotemporal variations and driving factors of water yield in Sichuan Province. The results showed that the annual average water yield in Sichuan Province exhibited an N-shaped dynamic trend of increase-decrease-increase from 2000 to 2020, reaching its peak in 2020 (5.75×105 m3). Water yield showed a clear pattern of being higher in the east and lower in the west. The high-value areas primarily concentrated in the southwestern part of Chengdu, the eastern part of Ya’an, and the regions of Meishan and Leshan. Over time, high-value areas gradually expanded to cover the southeastern part of Sichuan Province. Annual precipitation had the greatest contribution to the change of water yield in Sichuan region. The interaction between annual precipitation and annual potential evapotranspiration directly determined the generation and variation of water yield, representing the most dominant interactive factor. This research confirmed the effectiveness of the XGBoost-SHAP model in revealing the nonlinear impacts of driving factors on water yield, and could more directly and clearly identify the key driving factors.

Key words: machine learning, water supply service, XGBoost-SHAP model, driving mechanism