欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (9): 2827-2835.doi: 10.13287/j.1001-9332.202509.012

• 研究论文 • 上一篇    下一篇

基于机器学习模型的农田土壤容重模拟及其影响因素

丁司丞1, 方超1, 卓玛拉姆1, 冯兆忠1,2*   

  1. 1南京信息工程大学, 中国气象局生态系统碳源汇重点开放实验室(ECSS-CMA), 南京 210044;
    2南京信息工程大学, 气象灾害预测与评估协同创新中心(CIC-FEMD), 南京 210044
  • 收稿日期:2024-12-26 接受日期:2025-07-07 出版日期:2025-09-18 发布日期:2026-04-18
  • 通讯作者: *E-mail: zhaozhong.feng@nuist.edu.cn
  • 作者简介:丁司丞,女,1996年生,博士研究生。主要从事农田生态系统碳循环研究。E-mail:dsc1041858574@gmail.com
  • 基金资助:
    江苏省碳达峰碳中和科技创新专项(BK20220017)和江苏省研究生科研创新计划项目(KYCX24_1523)

Simulation of farmland soil bulk density and its influencing factors based on machine learning models

DING Sicheng1, FANG Chao1, ZHUOMA Lamu1, FENG Zhaozhong1,2*   

  1. 1Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2024-12-26 Accepted:2025-07-07 Online:2025-09-18 Published:2026-04-18

摘要: 为明确典型农田土壤容重空间变异规律及关键驱动因素,本研究采集江苏省611个农田样地0~10、10~20和20~40 cm剖面土壤样品,结合实测的土壤容重数据与多种物理化学性质及气候环境变量,分析了土壤容重的空间分布规律及主要影响因素,并采用随机森林和神经网络模型对土壤容重进行模拟。结果表明: 江苏省农田土壤容重随土层深度增加而显著增大。0~10和20~40 cm土壤容重空间分布规律总体一致,10~20 cm土壤容重受秸秆还田影响空间分布更具随机性;土壤容重高值区域相对集中分布于江苏省南部、徐州及沿海区域。11种作物种植模式下,仅0~10 cm土壤容重存在显著差异。农田0~20 cm土壤容重空间异质性受耕作与秸秆施用影响,20~40 cm土壤容重主要由母质和水热条件控制。农田土壤容重与土壤有机碳、全氮含量呈显著负相关,与pH和C/N呈显著正相关,且土壤容重受土壤深度、区域、年均温度和纬度的共同影响。基于10个土壤理化性质、环境因素和气候变量的随机森林模型和7个相关变量的神经网络模型可分别模拟农田土壤容重62%和53%的变异。随机森林模型中的重要环境因素为纬度、经度和年均温度,其次是土壤C/N及有机碳含量;神经网络模型中以年均降水量和C/N重要性最高。农田土壤容重受土壤理化性质、地理位置、作物种植模式和气候因子的共同影响,随机森林模型在模拟0~40 cm深度土壤容重方面效果更好,可基于易获取的变量便捷模拟长三角区域农田土壤容重。

关键词: 土壤容重, 农田土壤, 空间分布, 机器学习

Abstract: To elucidate the spatial variations and key drivers of soil bulk density (BD) in typical farmland across Jiangsu Province, we collected soil samples from 611 sites at depths of 0-10 cm, 10-20 cm, and 20-40 cm. By combining measured BD data with a suite of physicochemical properties and climatic variables, we analyzed the spatial variations of BD and its main influencing factors, and then simulated BD using random forest (RF) and neural network (NN) models. Results showed that soil BD increased significantly with soil depth. The spatial patterns of BD in the 0-10 cm and 20-40 cm layers were largely consistent, whereas the 10-20 cm layer exhibited greater spatial randomness due to straw incorporation. Areas with high soil BD values were mainly concentrated in southern Jiangsu, Xuzhou, and coastal zones. Among the examined 11 crop planting systems, significant differences in BD were observed only in the 0-10 cm layer. The spatial variation of BD in the 0-20 cm soil layer was influenced primarily by tillage practices and straw incorporation, while BD in the 20-40 cm layer was mainly governed by parent material and hydrothermal conditions. BD was negatively correlated with soil organic carbon and total nitrogen, and positively correlated with pH and C/N. Soil depth, located region, mean annual temperature, and latitude jointly influence BD value. The RF model based on 10 soil physicochemical traits, environmental factors, and climatic variables explained 62% of BD variation, while the NN model based on 7 key variables explained 53% of BD variation. In the RF model, latitude, longitude, and mean annual temperature were the most important predictors, followed by C/N and soil organic carbon. In the NN model, mean annual precipitation and C/N ranked the highest among all variables. Our findings suggested that farmland BD is jointly controlled by soil physicochemical properties, geographic location, cropping systems and climate factors, and that the RF model offers higher simulation performance of BD for 0-40 cm soil layer, enabling convenient simulation of farmland BD in the Yangtze River Delta region using readily available variables.

Key words: soil bulk density, farmland soil, spatial distribution, machine learning