应用生态学报 ›› 2020, Vol. 31 ›› Issue (7): 2464-2472.doi: 10.13287/j.1001-9332.202007.035
郑勇*, 贺纪正
收稿日期:
2020-02-07
接受日期:
2020-04-15
出版日期:
2020-07-15
发布日期:
2021-01-15
通讯作者:
E-mail: zhengy@fjnu.edu.cn
作者简介:
郑 勇, 男, 1981年生, 博士, 研究员。主要从事全球变化微生物生态学研究。 E-mail: zhengy@fjnu.edu.cn
基金资助:
ZHENG Yong*, HE Ji-zheng
Received:
2020-02-07
Accepted:
2020-04-15
Online:
2020-07-15
Published:
2021-01-15
Contact:
E-mail: zhengy@fjnu.edu.cn
Supported by:
摘要: 干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。
郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应[J]. 应用生态学报, 2020, 31(7): 2464-2472.
ZHENG Yong, HE Ji-zheng. Responses of forest soil microbial communities to drought and nitrogen deposition: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2464-2472.
[1] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013 [2] Ma ZH, Peng CH, Zhu QA, et al. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 2423-2427 [3] Schlesinger WH, Dietze MC, Jackson RB, et al. Forest biogeochemistry in response to drought. Global Change Biology, 2016, 22: 2318-2328 [4] Lamarque JF, Kiehl JT, Brasseur GP, et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. Journal of Geophysical Research-Atmospheres, 2005, 110: D19303 [5] Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892 [6] Reay DS, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1: 430-437 [7] Luo YQ, Jiang LF, Niu SL, et al. Nonlinear responses of land ecosystems to variation in precipitation. New Phytologist, 2017, 214: 5-7 [8] Cavicchioli R, Ripple WJ, Timmis KN, et al. Scientists' warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 2019, 17: 569-586 [9] Pan Y, Birdsey RA, Phillips OL, et al. The structure, distribution, and biomass of the world's forests. Annual Review of Ecology, Evolution, and Systematics, 2013, 44: 593-622 [10] Corrales A, Turner BL, Tedersoo L, et al. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecology, 2017, 27: 14-23 [11] 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 2019, 27(5): 500-522 [Lu X-K, Mo J-M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522] [12] Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 2017, 81: e00063-16 [13] de Vries FT, Liiri ME, Bjornlund L, et al. Legacy effects of drought on plant growth and the soil food web. Oecologia, 2012, 170: 821-833 [14] Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 2012, 93: 930-938 [15] Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 2018, 8: 2223 [16] Alster CJ, German DP, Lu Y, et al. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology & Biochemistry, 2013, 64: 68-79 [17] Hartmann M, Brunner I, Hagedorn F, et al. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Molecular Ecology, 2017, 26: 1190-1206 [18] Castaño C, Lindahl BD, Alday JG, et al. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytologist, 2018, 220: 1211-1221 [19] Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11: 789-799 [20] Preece C, Verbruggen E, Liu L, et al. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology & Biochemistry, 2019, 131: 28-39 [21] Bastida F, Lopez-Mondejar R, Baldrian P, et al. When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Science of the Total Environment, 2019, 662: 276-286 [22] Fierer N, Carney KM, Horner-Devine MC, et al. The biogeography of ammonia-oxidizing bacterial communities in soil. Microbial Ecology, 2009, 58: 435-445 [23] Schimel JP, Gulledge JM, Clein-Curley JS, et al. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology & Biochemistry, 1999, 31, 831-838 [24] Fierer N, Bradford MA, Jackson RB. Toward an ecolo-gical classification of soil bacteria. Ecology, 2007, 88: 1354-1364 [25] Koyama A, Wallenstein MD, Simpson RT, et al. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology, 2014, 5: 516 [26] Zeng QC, Dong YH, An SS. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China. PLoS One, 2016, 11(4): e0152894 [27] Kersters K, De Vos P, Gillis M, et al. Introduction to the Proteobacteria// Dworkin M, Falkow S, Rosenberg E, eds. The Prokaryotes. New York: Springer, 2006 [28] Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecology Letters, 2014, 17: 155-164 [29] Bouskill NJ, Lim HC, Borglin S, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. The ISME Journal, 2013, 7: 384-394 [30] Chodak M, Golebiewski M, Morawska-Ploskonka J, et al. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Annals of Microbiology, 2015, 65: 1627-1637 [31] Yuste JC, Fernandez-Gonzalez AJ, Fernandez-Lopez M, et al. Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biology & Biochemistry, 2014, 69: 223-233 [32] Zhao Q, Jian SG, Nunan N, et al. Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biology and Fertility of Soils, 2017, 53: 231-245 [33] Homyak PM, Allison SD, Huxman TE, et al. Effects of drought manipulation on soil nitrogen cycling: A meta-analysis. Journal of Geophysical Research-Biogeosciences, 2017, 122: 3260-3272 [34] Uhlirova E, Elhottova D, Triska J, et al. Physiology and microbial community structure in soil at extreme water content. Folia Microbiologica, 2005, 50: 161-166 [35] 聂园园, 周贵尧, 邵钧炯, 等. 模拟干旱对亚热带森林土壤微生物生物量及群落结构的影响. 复旦学报:自然科学版, 2017, 56(1): 97-105 [Nie Y-Y, Zhou G-Y, Shao J-J, et al. Effects of simulating drought on soil microbial biomass and community structure in subtropical forest. Journal of Fudan University: Natural Science, 2017, 56(1): 97-105] [36] Deepika S, Kothamasi D. Soil moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 2015, 25: 67-75 [37] Furze JR, Martin AR, Nasielski J, et al. Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecology and Evolution, 2017, 7: 3443-3454 [38] Guadarrama P, Castillo S, Ramos-Zapata JA, et al. Arbuscular mycorrhizal fungal communities in changing environments: The effects of seasonality and anthropogenic disturbance in a seasonal dry forest. Pedobiologia, 2014, 57: 87-95 [39] Zangaro W, Rostirola LV, de Souza PB, et al. Root colo-nization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 2013, 23: 221-233 [40] Maitra P, Zheng Y, Chen L, et al. Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecology, 2019, 41: 107-115 [41] 吴强盛, 邹英宁, 王贵元. 丛枝菌根真菌生态学研究进展. 长江大学学报:自然科学版, 2007, 4(2): 76-80 [Wu Q-S, Zou Y-N, Wang G-Y. Advances of arbuscular mycorrhizal fungal ecology. Journal of Yangtze University: Natural Science, 2007, 4(2): 76-80] [42] Kiers ET, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882 [43] Fellbaum CR, Gachomo EW, Beesetty Y, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 2666-2671 [44] 冯邦, 杨祝良. 外生菌根共生: 共生真菌多样性及菌根形成的分子机制. 中国科学: 生命科学, 2019, 49(4): 436-444 [Feng B, Yang Z-L. Ectomycorrhizal symbioses: Diversity of mycobionts and molecular mechanisms that entail the development of ectomycorrhizae. Scientia Sinica Vitae, 2019, 49(4): 436-444] [45] Valdés M, Asbjornsen H, Gómez-Cárdenas M, et al. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza, 2006, 16: 117-124 [46] Kennedy PG, Peay KG. Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant and Soil, 2007, 291: 155-165 [47] Meier S, Grand LF, Schoeneberger MM, et al. Growth, ectomycorrhizae and nonstructural carbohydrates of Loblolly Pine seedlings exposed to ozone and soil water deficit. Environmental Pollution, 1990, 64: 11-27 [48] Compant S, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 2010, 73: 197-214 [49] Shi LB, Guttenberger M, Kottke I, et al. The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): Changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza, 2002, 12: 303-311 [50] di Pietro M, Churin JL, Garbaye J. Differential ability of ectomycorrhizas to survive drying. Mycorrhiza, 2007, 17: 547-550 [51] Nickel UT, Weikl F, Kerner R, et al. Quantitative losses vs. qualitative stability of ectomycorrhizal community responses to 3 years of experimental summer drought in a beech-spruce forest. Global Change Biology, 2018, 24: 560-576 [52] Swaty RL, Deckert RJ, Whitham TG, et al. Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology, 2004, 85: 1072-1084 [53] Treseder KK. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 2008, 11: 1111-1120 [54] Zhang TA, Chen HYH, Ruan HH. Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 2018, 12: 1817-1825 [55] Johnson D, Leake JR, Lee JA, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 1998, 103: 239-250 [56] Wallenstein MD, McNulty S, Fernandez IJ, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 2006, 222: 459-468 [57] Tian D, Du EZ, Jiang L, et al. Responses of forest ecosystems to increasing N deposition in China: A critical review. Environmental Pollution, 2018, 243: 75-86 [58] Tian D, Jiang L, Ma S, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Science of the Total Environment, 2017, 607: 1367-1375 [59] Maaroufi NI, Nordin A, Palmqvist K, et al. Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Global Change Biology, 2019, 25: 2900-2914 [60] Vance ED, Chapin FS. Substrate limitations to microbial activity in taiga forest floors. Soil Biology & Biochemistry, 2001, 33: 173-188 [61] Frey SD, Knorr M, Parrent JL, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196: 159-171 [62] Fierer N, Lauber CL, Ramirez KS, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal, 2012, 6: 1007-1017 [63] 赵超, 彭赛, 阮宏华, 等. 氮沉降对土壤微生物影响的研究进展. 南京林业大学学报: 自然科学版, 2015, 39(3): 149-155 [Zhao C, Peng S, Ruan H-H, et al. Effects of nitrogen deposition on soil microbes. Journal of Nanjing Forestry University: Natural Sciences, 2015, 39(3): 149-155] [64] Wessén E, Hallin S, Philippot L. Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biology & Biochemistry, 2010, 42: 1759-1765 [65] Carrara JE, Walter CA, Hawkins JS, et al. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, 2018, 24: 2721-2734 [66] Nie YX, Han XG, Chen J, et al. The simulated N depo-sition accelerates net N mineralization and nitrification in a tropical forest soil. Biogeosciences, 2019, 16: 4277-4291 [67] Liu YJ, Shi GX, Mao L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194: 523-535 [68] Lilleskov EA, Kuyper TW, Bidartondo MI, et al. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: A review. Environmental Pollution, 2019, 246: 148-162 [69] Treseder KK. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 2004, 164: 347-355 [70] van Diepen LTA, Lilleskov EA, Pregitzer KS. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology, 2011, 20: 799-811 [71] Averill C, Dietze MC, Bhatnagar JM. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology, 2018, 24: 4544-4553 [72] Camenzind T, Hempel S, Homeier J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 2014, 20: 3646-3659 [73] Zheng Y, Kim YC, Tian XF, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 2014, 89: 594-605 [74] Camenzind T, Homeier J, Dietrich K, et al. Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology & Biochemistry, 2016, 94: 37-47 [75] Chen YL, Xu ZW, Xu TL, et al. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry, 2017, 115: 233-242 [76] Johnson D, Leake JR, Read DJ. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant and Soil, 2005, 271: 157-164 [77] van der Heijden MGA, Scheublin TR. Functional traits in mycorrhizal ecology: Their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytologist, 2007, 174: 244-250 [78] Nilsson LO, Giesler R, Bääth E, et al. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist, 2005, 165: 613-622 [79] Kjøller R, Nilsson LO, Hansen K, et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytologist, 2012, 194: 278-286 [80] Hasselquist NJ, Högberg P. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: An example from two N-limited boreal forests. Ecology and Evolution, 2014, 4: 3015-3026 [81] Avis PG, McLaughlin DJ, Dentinger BC, et al. Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist, 2003, 160: 239-253 [82] Wright SHA, Berch SM, Berbee ML. The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla). Mycorrhiza, 2009, 19: 267-276 [83] Vallack HW, Leronni V, Metcalfe DB, et al. Application of nitrogen fertilizer to a boreal pine forest has a negative impact on the respiration of ectomycorrhizal hyphae. Plant and Soil, 2012, 352: 405-417 [84] Lilleskov EA, Fahey TJ, Lovett GM. Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 2001, 11: 397-410 [85] Wallenda T, Kottke I. Nitrogen deposition and ectomycorrhizas. New Phytologist, 1998, 139: 169-187 [86] Avis PG, Mueller GM, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition. New Phytologist, 2008, 179: 472-483 [87] 李月蛟, 朱利英, 尹华军, 等. 连续三年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响. 生态学报, 2015, 35(9): 2967-2977 [Li Y-J, Zhu L-Y, Yin H-J, et al. Effects of 3-year continuous night-time warming and nitrogen fertilization on ectomycorrhizae of Picea asperata and the ectomycorrhizal fungal diversity. Acta Ecologica Sinica, 2015, 35(9): 2967-2977] [88] Zheng Y, Hu HW, Guo LD, et al. Dryland forest mana-gement alters fungal community composition and decouples assembly of root- and soil-associated fungal communities. Soil Biology & Biochemistry, 2017, 109: 14-22 [89] Soudzilovskaia NA, van Bodegom PM, Terrer C, et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, 2019, 10: 5077 [90] Valliere JM, Allen EB. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings. Plant and Soil, 2016, 403: 277-290 [91] Yan GY, Zhou MX, Wang M, et al. Nitrogen deposition and decreased precipitation altered nutrient foraging strategies of three temperate trees by affecting root and mycorrhizal traits. Catena, 2019, 181: 104094 [92] Khalili B, Ogunseitan OA, Goulden ML, et al. Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland. Applied Soil Ecology, 2016, 107: 144-153 [93] Yan GY, Xing YJ, Lu XT, et al. Effects of artificial nitrogen addition and reduction in precipitation on soil CO2 and CH4 effluxes and composition of the microbial biomass in a temperate forest. European Journal of Soil Science, 2019, 70: 1197-1211 [94] Chen ZJ, Zhou XY, Geng SC, et al. Interactive effect of nitrogen addition and throughfall reduction decreases soil aggregate stability through reducing biological binding agents. Forest Ecology and Management, 2019, 445: 13-19 [95] Gessler A, Schaub M, McDowell NG. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 2017, 214: 513-520 [96] Aguilar-Trigueros CA, Hempel S, Powell JR, et al. Bridging reproductive and microbial ecology: A case study in arbuscular mycorrhizal fungi. The ISME Journal, 2019, 13: 873-884 [97] Bueno CG, Gerz M, Zobel M, et al. Conceptual diffe-rences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza, 2019, 29: 1-11 [98] Treseder KK, Allen EB, Egerton-Warburton LM, et al. Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework. Journal of Ecology, 2018, 106: 480-489 |
[1] | 蒋皓天, 何恒果, 胥晓, 董廷发. 不同性别邻体和土壤灭菌对青杨幼苗生物量的影响 [J]. 应用生态学报, 2021, 32(1): 66-72. |
[2] | 陈佳瑞, 王国梁, 孟敏, 王润超. 干旱胁迫对3种灌木不同器官化学计量特征的影响 [J]. 应用生态学报, 2021, 32(1): 73-81. |
[3] | 张小琴, 张媛铃, 李炳言, 冯雅楠, 李萍, 张东升, 王利伟, 郝兴宇. CO2浓度升高对大豆干旱胁迫的缓解效应 [J]. 应用生态学报, 2021, 32(1): 182-190. |
[4] | 于文颖, 纪瑞鹏, 李卓群, 刘东明, 冯锐, 武晋雯, 张玉书. 辽宁省玉米复合农业气象灾害判识及特征 [J]. 应用生态学报, 2021, 32(1): 241-251. |
[5] | 党倩楠, 王进鑫, 姚丽霞, 吕国利, 张瑞琦. 干旱荒漠区煤矸石山覆土区土壤水分物理性质的空间异质性 [J]. 应用生态学报, 2021, 32(1): 281-288. |
[6] | 于健, 陈佳佳, 孟盛旺, 周华, 周光, 高露双, 王永平, 刘琪璟. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应 [J]. 应用生态学报, 2021, 32(1): 46-56. |
[7] | 李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义 [J]. 应用生态学报, 2020, 31(9): 3216-3226. |
[8] | 张雨鉴, 宋娅丽, 王克勤, 杨晓雨, 邢进梅, 张转敏. 滇中亚高山人工林凋落物分解对模拟氮沉降的响应 [J]. 应用生态学报, 2020, 31(8): 2523-2532. |
[9] | 肖怀娟, 李娟起, 王吉庆, 杜清洁. 亚低温与干旱胁迫对番茄植株水分传输和形态解剖结构的影响 [J]. 应用生态学报, 2020, 31(8): 2630-2636. |
[10] | 张玉芳, 杨柳, 刘琰琰, 张秀琼, 陈超, 谢士娟, 冯文帅. 1961—2017年攀西烤烟生育期农业气候资源变化特征 [J]. 应用生态学报, 2020, 31(7): 2352-2362. |
[11] | 牛胤全, 史雨刚, 汤小莎, 晋秀娟, 曹亚萍, 杨进文, 王曙光, 孙黛珍. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响 [J]. 应用生态学报, 2020, 31(7): 2407-2414. |
[12] | 杜文艳, 王玫, 闫助冰, 王建锋, 陈学森, 沈向, 尹承苗, 毛志泉. 残次苹果发酵产物对连作土壤环境及‘平邑甜茶’幼苗生长的影响 [J]. 应用生态学报, 2020, 31(5): 1443-1450. |
[13] | 李琬婷, 宁朋, 王菲, 程小毛, 黄晓霞. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响 [J]. 应用生态学报, 2020, 31(5): 1543-1550. |
[14] | 赵雅姣, 刘晓静, 吴勇, 童长春, 蔺芳. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响 [J]. 应用生态学报, 2020, 31(5): 1645-1652. |
[15] | 李宁, 白蕤, 伍露, 李玮, 陈淼, 陈歆, 范长华, 杨桂生. 未来气候变化对海南橡胶树春季物候期的影响 [J]. 应用生态学报, 2020, 31(4): 1241-1249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||