欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2020, Vol. 31 ›› Issue (11): 3842-3850.doi: 10.13287/j.1001-9332.202011.033

• • 上一篇    下一篇

氮掺杂碳纳米颗粒对稻田根际土壤细菌群落的影响

胡伟*, 向建华, 向言词, 陈燕   

  1. 湖南科技大学生态修复与景观设计研究所, 湖南湘潭 411201
  • 收稿日期:2020-02-18 接受日期:2020-08-10 出版日期:2020-11-15 发布日期:2021-06-10
  • 通讯作者: * E-mail: 673152206@qq.com
  • 作者简介:胡 伟, 男, 1982年生, 博士研究生。主要从事农田土壤氮素循环研究。E-mail: 673152206@qq.com
  • 基金资助:
    湖南省自然科学基金项目(2018JJ1347)、湖南省教育厅开放基金项目(15K046)和中国科学院A类战略性先导科技专项(XDA13020503,XDA13020602)资助

Effects of nitrogen-doped carbon nanoparticles on bacterial community in paddy rhizosphere soil

HU Wei*, XIANG Jian-hua, XIANG Yan-ci, CHEN Yan   

  1. Institute of Ecological Remediation and Landscape Design, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2020-02-18 Accepted:2020-08-10 Online:2020-11-15 Published:2021-06-10
  • Contact: * E-mail: 673152206@qq.com
  • Supported by:
    the Natural Science Foundation of Hunan Province, China (2018JJ1347), the Open Fund Project of Education Department, Hunan Province, China (15K046) and the Stratagic Priority Research Program of the Chinese Academy of Sciences (XDA13020503, XDA13020602).

摘要: 氮掺杂碳纳米颗粒(N-CNPs)具有较高的农田氮肥增效潜力,但其对稻田根际土壤细菌群落结构和功能的影响尚不明确。本研究以连续3年施用低(1.2%,N-CNPs1)、中(6.7%,N-CNPs2)和高(9.3%,N-CNPs3)氮掺杂碳纳米颗粒的稻田根际土壤为研究对象,采用高通量测序技术和PICRUSt 功能预测方法研究其细菌群落组成和代谢功能变化。结果表明: 连续3年配施N-CNPs能提升稻田根际土壤细菌群落多样性,改变细菌群落功能;不同氮掺杂量水平间存在差异,其中以中氮掺杂量(N-CNPs2)碳纳米颗粒处理变化幅度最大。细菌群落分析结果指出,配施N-CNPs提升了根际土壤中变形菌门、酸杆菌门和疣微菌门的相对丰度,降低了浮霉菌门、绿弯菌门、硝化螺旋菌门和芽单胞菌门的相对丰度。PICRUSt 功能预测结果表明,在二级预测功能分类中,配施N-CNPs处理的氨基酸代谢、碳水化合物代谢和脂类代谢功能得到增强,而其他代谢功能则受到减弱。KEGG 直系同源基因簇丰度热图结果显示,N-CNPs2处理能提升根际土壤碳、氮代谢相关的细菌群落的相对丰度。

关键词: 氮掺杂, 碳纳米颗粒, 稻田土壤, 细菌群落, 功能预测

Abstract: The nitrogen-doped carbon nanoparticles (N-CNPs) has a high potential of increasing nitrogen efficiency in farmland. However, little has been known about the effects of N-CNPs on soil microbial communities. In this study, paddy rhizosphere samples were collected from soils being treated with different nitrogen-doped amount of carbon nanoparticles (low, 1.2%, N-CNPs1; medium, 6.7%, N-CNPs2; high, 9.3%, N-CNPs3) for three years. We analyzed the bacterial community structure and diversity using the high-throughput sequencing. PICRUSt gene prediction analysis was used to determine soil community composition and metabolic function. Our results showed that treatment with N-CNPs changed the structure and diversity of soil microbial communities. Soil bacterial community diversity in adding medium amount of nitrogen-doped nanoparticles group (N-CNPs2) was the highest among all the treatments. Crenarchaeota, Acidobacteria and Planctomycetes were the most dominant groups in the soil microbial community. The relative abundances of Crenarchaeota, Acidobacteria and Verrucomicrobia increased, whereas Planctomycetes, Chloroflexi and Nitrospirae decreased with adding N-CNPs. Results of PICRUSt analysis revealed a wide genetic diversity of organisms involved in adding N-CNPs, such as amino acid metabolism, carbohydrate metabolism, lipid metabolism and environmental information processes. Heat map analysis of KEGG demonstrated that adding medium amount of nitrogen-doped nanoparticles (N-CNPs2) group increased the relative abundance of bacterial community associated with soil carbon and nitrogen metabolism.

Key words: nitrogen-doped, carbon nanoparticles, paddy soil, bacterial community, functional predicting