[1] Dias ATC, Cornelissen JHC, Berg MP, et al. Litter for life: Assessing the multifunctional legacy of plant traits. Journal of Ecology, 2017, 105: 1163-1168 [2] 张彩云, 赵红梅, 刘辉, 等. 外源氮添加对温带荒漠地表凋落物分解及养分释放的影响. 应用生态学报, 2020, 31(11): 3631-3638 [3] Djukic I, Kepfer-Rojas S, Schmidt IK, et al. Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629: 1369-1394 [4] Heim A, Fery B. Early stage litter decomposition rates for Swiss forests. Biogeochemistry, 2004, 70: 299-313 [5] 水新利, 白云玉, 张英洁, 等. 氮沉降对长白山3种苔原类型凋落物早期分解的影响. 植物科学学报, 2021, 39(6): 580-591 [6] 张晓曦, 周雯星, 王丽洁, 等. 模拟氮沉降对凋落物早期混合分解中相互作用的影响. 生态学杂志, 2022, 41(9): 1708-1716 [7] Strickland MS, Osburn E, Lauber C, et al. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Functio-nal Ecology, 2009, 23: 627-636 [8] 刘博文, 张丽, 吴福忠, 等. 高寒森林不同生境凋落叶分解过程中水溶性组分动态特征. 生态学杂志, 2020, 39(4): 1130-1140 [9] 陈有超, 马书琴, 鲁旭阳. 藏北高寒草原典型物种凋落物分解与养分动态. 草业科学, 2019, 36(4): 1066-1073 [10] 高海燕, 红梅, 霍利霞, 等. 外源氮输入和水分变化对荒漠草原凋落物分解的影响. 应用生态学报, 2018, 29(10): 3167-3174 [11] Chen M, Zhu X, Zhao C, et al. Rapid microbial community evolution in initial Carex litter decomposition stages in Bayinbuluk alpine wetland during the freeze-thaw period. Ecological Indicators, 2021, 121: 107180 [12] 李姗姗, 王正文, 杨俊杰. 凋落物分解过程中土壤微生物群落的变化. 生物多样性, 2016, 24(2): 195-204 [13] Gobiewski M, Tarasek A, Sikora M, et al. Rapid microbial community changes during initial stages of pine litter decomposition. Microbial Ecology, 2019, 77: 56-75 [14] Romaní AM, Fischer H, Tranvik MLJ, et al. Interactions of bacteria and fungi on decomposing litter: Diffe-rential extracellular enzyme activities. Ecology, 2006, 87: 2559-2569 [15] Dong XD, Gao P, Zhou R, et al. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acu-tissima Carruth, and Robinia pseudoacacia L. forest in Northern China. Catena, 2021, 196: 104811 [16] Zeng Q, Liu Y, Zhang H, et al. Fast bacterial succession associated with the decomposition of Quercus wutai-shanica litter on the Loess Plateau. Biogeochemistry, 2019, 144: 119-131 [17] Ma C, Yin X, Kou X, et al. Effects of soil fauna on cellulose and lignin decomposition of plant litter in the Changbai Mountain, China. Environmental Entomology, 2019, 10: 592-602 [18] Otaki M, Tsuyuzaki S. Succession of litter-decomposing microbial organisms in deciduous birch and oak forests, northern Japan. Acta Oecologica, 2019, 101: 103485 [19] Purahong W, Wubet T, Lentendu G, et al. Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Eco-logy, 2016, 25: 4059-4074 [20] 黄庆阳, 杨帆, 谢立红, 等. 五大连池火山土壤细菌多样性及其群落结构. 生态学报, 2021, 41(20): 8276-8284 [21] Deligne NI, Cashman KV, Roering JJ. After the lava flow: The importance of external soil sources for plant colonization of recent lava flows in the central Oregon Cascades, USA. Geomorphology, 2013, 202: 15-32 [22] 黄庆阳, 曹宏杰, 谢立红, 等. 五大连池火山熔岩台地草本层物种多样性及环境解释. 生物多样性, 2020, 28(6): 658-667 [23] 夏瑜, 何绪文, 文湘华. 微生物群落多样性数学表征方法及其在污水处理系统研究中的应用. 微生物学通报, 2018, 45(8): 1778-1786 [24] 唐仕姗, 杨万勤, 殷睿, 等. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 2014, 38(6): 529-539 [25] Bahnmann B, Mašínová T, Halvorsen R, et al. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biology and Biochemistry, 2018, 119: 162-173 [26] 栾奎志, 樊绪富, 王维芳. 白桦与山杨叶凋落物候的差异及其生态学意义. 东北林业大学学报, 2012, 40(2): 20-22 [27] 徐波, 朱忠福, 李金洋, 等. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征. 植物生态学报, 2016, 40(9): 883-892 [28] 徐李亚, 杨万勤, 李晗, 等. 雪被覆盖对高山森林凋落物分解过程中水溶性和有机溶性组分含量的影响.应用生态学报, 2014, 25(11): 3067-3075 [29] 李成道, 李向义, Sun HJ, 等. 极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征. 中国沙漠, 2019, 38(2): 479-486 [30] Jia T, Liang X, Guo T, et al. Bacterial community succession and influencing factors for Imperata cylindrica litter decomposition in a copper tailings area of China. Science of the Total Environment, 2022, 815: 152908 [31] Güsewell S, Gessner MO. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 2009, 23: 211-219 [32] 黄庆阳, 谢立红, 曹宏杰, 等. 五大连池火山山杨叶功能性状的变异特征. 北京林业大学学报, 2021, 43(2): 81-89 [33] 杨贵森, 张志山, 赵洋, 等. 沙坡头地区凋落物分解及其对土壤微生物群落的影响. 应用生态学报, 2022, 33(7): 1810-1818 [34] Olsson-Francis K, Boardman CP, Pearson VK, et al. A culture-independent and culture-dependent study of the bacterial community from the bedrock soil interface. Advances in Microbiology, 2015, 5: 842-857 [35] Sellstedt A, Richau KH. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters, 2013, 342: 179-186 [36] Wright IJ, Reich PB, Cornelissen JHC, et al. Assessing the generality of global leaf trait relationships. New Phytologist, 2010, 166: 485-496 [37] Wang W, Zhang Q, Sun X, et al. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology and Biochemistry, 2019, 141: 107690 [38] Xu M, Lu X, Xu Y, et al. Dynamics of bacterial community in litter and soil along a chronosequence of Robinia pseudoacacia plantations. Science of the Total Environment, 2020, 703: 135613 [39] Purahong W, Kapturska D, Pecyna MJ, et al. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. Microbial Ecology, 2015, 69: 905-913 [40] Koceja ME, Bledsoe RB, Goodwillie C, et al. Distinct microbial communities alter litter decomposition rates in a fertilized coastal plain wetland. Ecosphere, 2021, 12: 3619 [41] Jones RT, Robeson MS, Lauber CL, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses nih public access. ISME Journal, 2019, 3: 442-453 [42] Ren C, Zhao F, Kang D, et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376: 59-66 |