应用生态学报 ›› 2022, Vol. 33 ›› Issue (3): 603-612.doi: 10.13287/j.1001-9332.202203.019
• 全球变化对生态脆弱区资源环境承载力的影响专栏 • 上一篇 下一篇
李玉强1,2,3*, 陈云1,2, 曹雯婕1,2, 王旭洋1,3, 牛亚毅1,2
收稿日期:
2021-05-23
接受日期:
2021-11-07
出版日期:
2022-03-15
发布日期:
2022-09-15
通讯作者:
* E-mail: liyq@lzb.ac.cn
作者简介:
李玉强, 男, 1975年生, 研究员, 博士生导师。 主要从事半干旱区生态恢复研究。 E-mail: liyq@lzb.ac.cn
基金资助:
LI Yu-qiang1,2,3*, CHEN Yun1,2, CAO Wen-jie1,2, WANG Xu-yang1,3, NIU Ya-yi1,2
Received:
2021-05-23
Accepted:
2021-11-07
Online:
2022-03-15
Published:
2022-09-15
摘要: 随着全球变化研究的深入,面向社会可持续发展的全球变化风险与应对、全球变化对资源环境要素时空配置与生态系统的影响评估等应用性问题正成为全球变化领域的新趋势。基于生态学范畴,本文重点梳理了资源环境的涵义及其构成要素:资源是自养生物利用无机物制造有机物及能量和物质在生物间传递过程中所消耗的一切实体,包括无机资源(太阳辐射、CO2、O2、水和矿质元素等)和有机资源(作为其他生物的食物资源)两类,而环境不能被生物有机体消耗或用竭。此外,阐述了全球变化组成及其引发的资源环境要素变化特征,以及当前关于生态系统对全球变化响应的研究进展,以期从生态学原理角度科学认知全球变化对资源环境及生态系统的影响过程与机制,为全球变化风险应对实践提供生态学理论基础。
李玉强, 陈云, 曹雯婕, 王旭洋, 牛亚毅. 全球变化对资源环境及生态系统影响的生态学理论基础[J]. 应用生态学报, 2022, 33(3): 603-612.
LI Yu-qiang, CHEN Yun, CAO Wen-jie, WANG Xu-yang, NIU Ya-yi. Theoretical basis of ecology for the influence of global change on resources, environment, and ecosystems.[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 603-612.
[1] | 张兰生, 方修琦, 任国玉. 全球变化. 第2版. 北京: 高等教育出版社, 2017 |
[2] | 朱诚, 马春梅, 陈刚, 等. 全球变化科学导论. 第4版. 北京: 科学出版社, 2017 |
[3] | 于贵瑞, 徐兴良, 王秋凤, 等. 全球变化对生态脆弱区资源环境承载力的影响研究. 中国基础科学, 2017, 19(6): 19-23 |
[4] | 黎祖交. 关于资源、环境、生态关系的探讨——基于十八大报告的相关表述. 林业经济, 2013(2): 11-15 |
[5] | Begon M, Townsend CR, Harper JL. Ecology: From Individuals to Ecosystems. 4th Ed. Oxford, UK: Blackwell, 2006 |
[6] | 李博. 生态学. 北京: 高等教育出版社, 2000 |
[7] | 陈至立. 辞海. 第7版. 上海: 上海辞书出版社, 2020 |
[8] | Schowalter TD. Insect Ecology: An Ecosystem Approach. 4th Ed. Pittsburgh, PA, USA: Academic Press, 2016 |
[9] | 方精云. 全球生态学. 北京: 高等教育出版社, 2000 |
[10] | 李文华. 中国当代生态学研究. 北京: 科学出版社, 2013 |
[11] | 方修琦, 殷培红. 弹性、脆弱性和适应——IHDP三个核心概念综述. 地理科学进展, 2007, 26(5): 11-22 |
[12] | IPCC. Climate Change 2001: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Third Assessment Report. Cambridge, UK: Cambridge University Press, 2001 |
[13] | 孙晶, 王俊, 杨新军. 社会-生态系统恢复力研究综述. 生态学报, 2007, 27(12): 5371-5381 |
[14] | Smit B, Wandel J. Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 2006, 16: 282-292 |
[15] | 曲云鹤, 余成群, 武俊喜, 等. 发达国家草原管理模型的发展趋势. 中国草地学报, 2014, 36(4): 110-115 |
[16] | 骆亦其, 夏建阳. 陆地碳循环的动态非平衡假说. 生物多样性, 2020, 28(11): 1405-1416 |
[17] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望. 植物生态学报, 2020, 44(5): 449-460 |
[18] | Sr Pielke RA, Schellnhuber HJ, Sahagian D. Nonlinearities in the earth system. Global Change Newsletter, 2003, 55: 11-15 |
[19] | Zhou X, Weng E, Luo Y. Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 2008, 18: 453-466 |
[20] | Bradley DC, Ormerod SJ. Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology, 2002, 47: 161-171 |
[21] | Mayer AL, Rietkerk M. The dynamic regime concept for ecosystem management and restoration. Bioscience, 2004, 54: 1013-1020 |
[22] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013 |
[23] | Loladze I. Rising atmospheric CO2 and human nutrition: Toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution, 2002, 17: 457-461 |
[24] | NOAA. National Oceanic and Atmospheric Administration (NOAA) [EB/OL]. (2019-06-04) [2021-05-16]. https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May |
[25] | 王腊春, 史运良, 曾春芬. 水资源学. 南京: 东南大学出版社, 2015 |
[26] | IPCC. Climate Change 2021: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2021: 67-89 |
[27] | Poulsen CJ, Tabor C, White JD. Long-term climate forcing by atmospheric oxygen concentrations. Science, 2015, 48: 1238-1241 |
[28] | 王国欢, 白帆, 桑卫国. 中国外来入侵生物的空间分布格局及其影响因素. 植物科学学报, 2017, 35(4): 513-524 |
[29] | Roy J, Picon-Cochard C, Augusti A, et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6224-6229 |
[30] | Swann ALS, Hoffman FM, Koven CD, et al. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 10019-10024 |
[31] | Mcgilloway DA. Grassland: A Global Resource. Wageningen, the Netherlands: Wageningen Academic Publishers, 2005 |
[32] | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533 |
[33] | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295 |
[34] | D'Odorico P, Bhattachan A, Davis KF, et al. Global desertification: Drivers and feedbacks. Advances in Water Resources, 2013, 51: 326-344 |
[35] | Lal R, Hassan HM, Dumanski J. Desertification control to sequester carbon and mitigate the greenhouse effect// Rosenberg N, Izaurralde RC, Malone EL, Eds. Carbon Sequestration in Soils: Science, Monitoring and Beyond. Columbus, OH, USA: Battelle Press, 1999: 83-151 |
[36] | Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change, 2001, 51: 35-72 |
[37] | IPCC. Climate Change: The Scientific Basis. Cambridge, UK: Cambridge University Press, 2001 |
[38] | Goldscheider N, Chen Z, Auler AS, et al. Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 2020, 28: 1661-1677 |
[39] | 杨子生. 中国西南喀斯特石漠化土地整理及其水土保持效益研究——以滇东南西畴县为例. 北京: 中国科学技术出版社, 2009 |
[40] | 国家林业和草原局. 中国·岩溶地区石漠化状况公报 [EB/OL]. (2018-12-14) [2021-05-16]. http://www.forestry.gov.cn/main/195/20181214/104340783851386.html |
[41] | 李梦先. 我国西南岩溶地区石漠化发展趋势. 中南林业调查规划, 2006(3): 19-22 |
[42] | Zhao S, Pereira P, Wu X, et al. Global karst vegetation regime and its response to climate change and human activities. Ecological Indicators, 2020, 113: 106208 |
[43] | 王代长. 酸化土壤表面离子的反应动力学. 郑州: 黄河水利出版社, 2009 |
[44] | 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应. 生态学杂志, 2019, 38(6): 1900-1908 |
[45] | Chen W, Xu R, Hu T, et al. Soil-mediated effects of acidification as the major driver of species loss following N enrichment in a semi-arid grassland. Plant and Soil, 2017, 419: 541-556 |
[46] | 袁兴伟, 刘尊雷, 程家骅, 等. 气候变化对冬季东海外海中下层游泳动物群落结构及重要经济种类的影响. 生态学报, 2017, 37(8): 2796-2808 |
[47] | Pörtner HO, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 2007, 315: 95-97 |
[48] | 邢鹏, 李彪, 韩一萱, 等. 淡水生态系统对全球变化的响应:研究进展与展望. 植物生态学报, 2020, 44(5): 565-574 |
[49] | Zhou G, Wei X, Wu Y, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Bio-logy, 2011, 17: 3736-3746 |
[50] | Zhou G, Peng C, Li Y, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 2013, 19: 1197-1210 |
[51] | 邹顺, 周国逸, 张倩媚, 等. 1992—2015年鼎湖山季风常绿阔叶林群落结构动态. 植物生态学报, 2018, 42(4): 442-452 |
[52] | Zhang J, Huang S, He F. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 4009-4014 |
[53] | 杜忠毓, 安慧, 文志林, 等. 荒漠草原植物群落结构及其稳定性对增水和增氮的响应. 生态学报, 2021, 41(6): 2359-2371 |
[54] | 张宇, 阿斯娅·曼力克, 辛晓平, 等. 禁牧与放牧对新疆温性草原群落结构、生物量及牧草品质的影响. 草地学报, 2020, 28(3): 815-821 |
[55] | 张扬建, 朱军涛, 沈若楠, 等. 放牧对草地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 553-564 |
[56] | Srinivasan UT, Carey SP, Hallstein E, et al. The debt of nations and the distribution of ecological impacts from human activities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 1768-1773 |
[57] | 史慧慧, 程久苗, 费罗成, 等. 1990—2015年长三角城市群土地利用转型与生态系统服务功能变化. 水土保持研究, 2019, 26(1): 301-307 |
[58] | 江凌, 肖燚, 饶恩明, 等. 内蒙古土地利用变化对生态系统防风固沙功能的影响. 生态学报, 2016, 36(12): 3734-3747 |
[59] | 于贵瑞. 人类活动与生态系统变化的前沿科学问题. 北京: 高等教育出版社, 2009 |
[60] | Shaver GR, Canadell J, Chapin FS, et al. Global warming and terrestrial ecosystems: A conceptual framework for analysis. Bioscience, 2000, 50: 871-882 |
[61] | Lovett RA. Global warming: Rain might be leading carbon sink factor. Science, 2002, 296: 1787 |
[62] | Miller AD, Dietze MC, Delucia EH, et al. Alteration of forest succession and carbon cycling under elevated CO2. Global Change Biology, 2016, 22: 351-363 |
[63] | Song J, Wan S, Piao S, et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 2019, 22: 458-468 |
[64] | Braun S, Rihm B, Schindler C, et al. Growth of mature beech in relation to ozone and nitrogen deposition: An epidemiological approach. Water, Air, and Soil Pollution, 1999, 116: 357-364 |
[65] | Ahmed BM, Rashid KH, Zaman K, et al. Measuring the impact of global tropospheric ozone, carbon dioxide and sulfur dioxide concentrations on biodiversity loss. Environmental Research, 2018, 160: 398-411 |
[66] | Farquhar GD, Roderick ML. Pinatubo, diffuse light, and the carbon cycle. Science, 2003, 299: 1997-1998 |
[67] | Savage KE, Parton WJ, Davidson EA, et al. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Global Change Biology, 2013, 19: 2389-2400 |
[68] | Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322 |
[69] | Zeng X, Zhang W, Liu X, et al. Change of soil organic carbon after cropland afforestation in ‘Beijing-Tianjin Sandstorm Source Control' program area in China. Chinese Geographical Science, 2014, 24: 461-470 |
[70] | Zhang J, Fu B, Stafford-Smith M, et al. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology & Evolution, 2021, 5: 10-13 |
[71] | 方修琦, 陈发虎. 植物物候与气候变化. 中国科学: 地球科学, 2015, 45(5): 707-708 |
[72] | Yang LH, Rudolf VHW. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 2010, 13: 1-10 |
[73] | Piao S, Friedlingstein P, Ciais P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 2017, 21: B3018 |
[74] | Jeong SJ, Ho CH, Jeong JH. Increase in vegetation greenness and decrease in springtime warming over East Asia. Geophysical Research Letters, 2009, 39: L2710 |
[75] | Schwartz MD, Karl TR. Spring phenology: Nature's experiment to detect the effect of “green-up” on surface maximum temperatures. Monthly Weather Review, 1990, 118: 883-890 |
[76] | Kim JH, Hwang T, Yang Y, et al. Warming-induced earlier greenup leads to reduced stream discharge in a temperate mixed forest catchment. Journal of Geophysical Research. Biogeosciences, 2018, 123: 1960-1975 |
[77] | 吴廷娟. 全球变化对土壤动物多样性的影响. 应用生态学报, 2013, 24(2): 581-588 |
[78] | Andresen LC, Michelsen A, Jonasson S, et al. Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant and Soil, 2010, 328: 381-396 |
[79] | Wardle DA. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press, 2002 |
[80] | Siebert J, Sünnemann M, Auge H, et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Scientific Reports, 2019, 9: 639 |
[81] | 丁一汇. 人类活动与全球气候变化及其对水资源的影响. 中国水利, 2008(2): 20-27 |
[82] | 姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响. 自然杂志, 2013, 35(3): 179-186 |
[83] | 朱立平, 彭萍, 张国庆, 等. 全球变化下青藏高原湖泊在地表水循环中的作用. 湖泊科学, 2020, 32(3): 597-608 |
[84] | Fu G, Charles SP, Yu J. A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 2009, 97: 193-214 |
[85] | Roderick ML, Farquhar GD. The cause of decreased pan evaporation over the past 50 years. Science, 2002, 298: 1410-1411 |
[86] | Chen H, Fleskens L, Baartman J, et al. Impacts of land use change and climatic effects on streamflow in the Chinese Loess Plateau: A meta-analysis. Science of the Total Environment, 2020, 703: 134989 |
[87] | Gao X, Yan C, Wang Y, et al. Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau: A case study of the Jing River Basin. Land Degradation & Development, 2020, 31: 1622-1640 |
[88] | Sterling SM, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 2013, 3: 385-390 |
[89] | Zhang X, Han X. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. Journal of Environmental Sciences, 2012, 24: 1483-1491 |
[90] | 闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292 |
[91] | 高雪峰, 韩国栋. 放牧对羊草草原土壤氮素循环的影响. 土壤, 2011, 43(2): 161-166 |
[92] | Hou S, Lü X, Yin J, et al. The relative contributions of intra- and inter-specific variation in driving community stoichiometric responses to nitrogen deposition and mowing in a grassland. Science of the Total Environment, 2019, 666: 887-893 |
[93] | 苏原, 罗艳, 耿凤展, 等. 天山高寒草原植物叶片氮磷化学计量特征对氮沉降的响应. 干旱区研究, 2019, 36(2): 430-436 |
[94] | Wang L, Wang P, Sheng M, et al. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Global Ecology and Conservation, 2018, 16: e449 |
[1] | 于贵瑞, 王永生, 杨萌. 生态系统质量及其状态演变的生态学理论和评估方法之探索 [J]. 应用生态学报, 2022, 33(4): 865-877. |
[2] | 于贵瑞, 张雪梅, 赵东升, 邓思琪. 区域资源环境承载力科学概念及其生态学基础的讨论 [J]. 应用生态学报, 2022, 33(3): 577-590. |
[3] | 赵东升, 张雪梅, 邓思琪, 于贵瑞. 区域资源环境承载力的评价理论及方法讨论 [J]. 应用生态学报, 2022, 33(3): 591-602. |
[4] | 张添佑, 陈智, 温仲明, 于贵瑞. 陆地生态系统临界转换理论及其生态学机制研究进展 [J]. 应用生态学报, 2022, 33(3): 613-622. |
[5] | 徐兴良, 于贵瑞. 基于生态系统演变机理的生态系统脆弱性、适应性与突变理论 [J]. 应用生态学报, 2022, 33(3): 623-628. |
[6] | 侯国龙, 胡中民. 全球变化影响下的生态系统风险的相关理论及联系 [J]. 应用生态学报, 2022, 33(3): 629-637. |
[7] | 朱军涛, 牛犇, 宗宁, 赵博, 郑周涛, 赵广, 庾强, 王常慧, 张扬建. 全球变化联网控制实验的创新性设计:以我国草地生态系统水热要素联网控制实验为例 [J]. 应用生态学报, 2022, 33(3): 648-654. |
[8] | 孔业富, 尹成杰, 王林龙, 刘杨, 林黎, 康斌. 基于Ecopath模型的三门湾生态系统结构与功能 [J]. 应用生态学报, 2022, 33(3): 829-836. |
[9] | 沈鸿坤, 赵博义, 陈铭洋, 黄荣永, 余克服, 梁文. 1995—2019年广西山口红树林国家级自然保护区互花米草和红树林面积变化 [J]. 应用生态学报, 2022, 33(2): 397-404. |
[10] | 彭丽, 赵仲辉, 项文化, 邓湘雯, 欧阳帅. 辐射变化对中亚热带杉木人工林净CO2交换的影响 [J]. 应用生态学报, 2022, 33(1): 17-24. |
[11] | 吴昊, 张三煜, 姬秋博, 王文浩, 肖楠楠, 张乐慧. 异质生境对水生型空心莲子草-双穗雀稗共存的影响 [J]. 应用生态学报, 2022, 33(1): 85-96. |
[12] | 岳文泽, 侯丽, 夏皓轩, 韦静娴, 卢有朋. 基于生态系统服务供需平衡的宁夏固原生态修复分区与优化策略 [J]. 应用生态学报, 2022, 33(1): 149-158. |
[13] | 邓元杰, 侯孟阳, 贾磊, 汪亚琴, 张晓, 姚顺波. 基于生态系统服务价值评估的长征沿线革命老区生态补偿策略 [J]. 应用生态学报, 2022, 33(1): 159-168. |
[14] | 陈睿, 杨灿, 杨艳, 董祥泽. 洞庭湖生态经济区生态系统服务价值的时空演绎及其驱动因素 [J]. 应用生态学报, 2022, 33(1): 169-179. |
[15] | 于贵瑞, 任小丽, 杨萌, 陈智. 宏观生态系统科学整合研究的多学科知识融合及其技术途径 [J]. 应用生态学报, 2021, 32(9): 3031-3044. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||