欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2011, Vol. 22 ›› Issue (03): 701-706.

• 研究报告 • 上一篇    下一篇

高温对仁用杏光合特性及PSⅡ光化学活性的影响

杜国栋1,2,吕德国1,2**,赵玲3,王素素1,蔡倩4   

  1. 1沈阳农业大学园艺学院, 沈阳 110866;2沈阳农业大学北方果树育种与生理生态研究所, 沈阳 110866;3沈阳农业大学工程学院, 沈阳 110866;4辽宁省风沙地改良利用研究所, 辽宁阜新 123000
  • 出版日期:2011-03-18 发布日期:2011-03-18

Effects of high temperature on leaf photosynthetic characteristics and photosystemⅡ photochemical activity of kernel-used apricot.

DU Guo-dong1,2, LÜ|De-guo1,2, ZHAO Ling3, WANG Su-su1, CAI Qian4   

  1. 1College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China|2Research Institute for Breeding and Physiology-Ecology of Northern Fruit Tree, Shenyang Agricultural University, Shenyang 110866, China|3College of Engineering, Shenyang Agricultural University, Shenyang 110866, China|4Liaoning Institute of Sandy Land Amelioration and Utilization, Fuxin 123000, Liaoning, China
  • Online:2011-03-18 Published:2011-03-18

摘要: 为探讨高温胁迫下仁用杏叶片的光合适应机制,以科尔沁沙地生长的4年生‘超仁’仁用杏为试材,设置环境温度为25 ℃、30 ℃、40 ℃和50 ℃处理,利用气体交换技术和快速叶绿素荧光诱导动力学曲线分析技术(JIP-test),研究了仁用杏叶片光合特性和PSⅡ光化学活性.结果表明:在一定温度范围内,随着温度升高,仁
用杏通过提高光合色素含量和比例来维持光能的吸收、传递和转换能力,从而保证光合机构正常运转;当高温超过叶片自身生理调节限度后,叶绿素发生分解、净光合速率(Pn)明显下降、胞间CO2浓度(Ci)上升,说明光合作用的下降是由叶肉因素造成的.温度40 ℃导致单位面积有活性反应中心数量(RC/CSo)显著下降;而50 ℃高温下荧光诱导曲线中K点(Wk)和J点(Vj)明显增加,高温对仁用杏叶片放氧复合体(OEC)、受体侧和PSⅡ反应中心造成了伤害.此外,50 ℃高温还导致初始荧光(Fo)显著升高,为对照的2.26倍,PSⅡ最大光化学效率(Fv/Fm)和光化学性能指数(PIABS)分别下降为对照的37.9%和10.3%.高温损害了PSⅡ供体侧和受体侧的功能,造成光合效率下降,这是高温胁迫对仁用杏叶片光合机构伤害的主要机制之一.

关键词: 仁用杏, 高温胁迫, 光合特性, 叶绿素荧光, JIP test

Abstract: In order to explore the photosynthetic adaption mechanisms of kernel-used apricot under high temperature stress, gas exchange technique and chlorophyll fluorescence transient technique (JIP-test) were adopted to study the leaf photosynthetic characteristics and photosystemⅡ (PSⅡ) photochemical activity of 4 year-old ‘Chaoren’ (Armeniaca vulgaris × sibirica) growing on Horqin sandy land at 25 ℃, 30 ℃, 40 ℃, and 50 ℃. Within a definite temperature range, and as the temperature increased, the ‘Chaoren’ could enhance its leaf photosynthetic pigments content and ratio to maintain the light absorption, transfer, and conversion, and thereby, to ensure the function of photosynthetic apparatus. However, when the temperature exceeded the physiological adjustment threshold of leaves, the chlorophyll began to be decomposed, net photosynthetic rate (Pn) declined obviously, and intercellular CO2 concentration (Ci) increased, indicating that the decline in photosynthesis was limited by mesophyll factor. At 40 ℃, the density of PSⅡ reaction centers per excited cross-section (RC/CSo) dropped distinctly; and at 50 ℃, the K phase (Wk) and J phase (Vj) in the O-J-I-P chlorophyll fluorescence transients increased distinctly, indicating that high temperature damaged the oxygen-evolving complex (OEC), donor sides, and PSⅡ reaction centers. In addition, the minimum chlorophyll florescence (Fo) at 50 ℃ increased significantly by 1.26 times, compared with the control, and the maximum photochemical efficiency (Fv/Fm) and performance index (PIABS) reduced to 37.9% and 10.3% of the control, respectively. High temperature injured the function of the donor and acceptor sides in the PSⅡ of photosynthetic apparatus, leading to the decrease of photosynthetic efficiency, and being one of the main mechanisms for the damage of photosynthetic apparatus in kernel-used apricot leaves under high temperature stress.

Key words: kernel-used apricot, high temperature stress, photosynthetic characteristics, chlorophyll fluorescence, JIP test