应用生态学报 ›› 2022, Vol. 33 ›› Issue (6): 1719-1728.doi: 10.13287/j.1001-9332.202210.029
• 综合评述 • 上一篇
李晓天, 黄焯燊, 汤有千, 林昌权, 王春铭*
收稿日期:
2021-07-21
接受日期:
2022-03-17
发布日期:
2022-12-15
通讯作者:
*E-mail: mirian88@scau.edu.cn
作者简介:
李晓天, 男, 1998年生, 硕士研究生。主要从事固体废物处理处置研究。E-mail: tiantian614169314@163.com
基金资助:
LI Xiao-tian, HUANG Zhuo-shen, TANG You-qian, LIN Chang-quan, WANG Chun-ming*
Received:
2021-07-21
Accepted:
2022-03-17
Published:
2022-12-15
摘要: 动物饲料中常混有抗生素和重金属,导致外排的动物粪便中携带有抗生素和重金属,引发细菌产生耐药性和重金属抗性,继而产生抗生素抗性基因和重金属抗性基因。抗生素和重金属抗性基因污染已成为威胁人类身体健康及破坏生态环境的重大问题。本文从细菌进化的角度,明确了细菌的抗生素和重金属长期进化试验对抗性机制研究的重要性;抗生素抗性基因与重金属抗性基因间存在复杂的协同选择抗性,两者间相互影响,共同决定着细菌环境行为;抗性基因的水平转移增加了细菌在环境中的可变性,可移动遗传元件在抗性基因水平转移中发挥着重要作用。在抗性基因污染控制方面,高级氧化技术具有很好的抗性基因去除效果,尤其是UV/TiO2氧化技术,能使抗生素抗性基因丰度减少4.7~5.8 log,减少率大于99.99%。其他的控制策略,如抗生素替代品博落回提取物以及噬菌体与抗生素结合使用,对于抗性基因的控制也具有重要意义。
李晓天, 黄焯燊, 汤有千, 林昌权, 王春铭. 畜禽养殖废物中抗生素和重金属抗性基因的产生机制和控制方法研究进展[J]. 应用生态学报, 2022, 33(6): 1719-1728.
LI Xiao-tian, HUANG Zhuo-shen, TANG You-qian, LIN Chang-quan, WANG Chun-ming. Generation mechanism and control methods of antibiotic and heavy metal resistance genes in poultry waste: A review[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1719-1728.
[1] 汪复. 如何应对“超级细菌”的挑战. 中国感染与化疗杂志, 2010, 10(6): 401-402 [2] Liu X, Steele JC, Meng XZ. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 2017, 223: 161-169 [3] 王飞, 邱凌, 沈玉君, 等. 华北地区饲料和畜禽粪便中重金属质量分数调查分析. 农业工程学报, 2015, 31(5): 261-267 [4] Zhou LJ, Ying GG, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of the Total Environment, 2013, 444: 183-195 [5] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 2010, 74: 417-433 [6] Mata MT, Baquero F, PérezDíaz JC. A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiology Letters, 2006, 187: 185-188 [7] Hynninen A, Touze T, Pitkanen L, et al. 2009. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Molecular Microbiology, 74: 384-394 [8] Culyba MJ, Mo CY, Kohli RM. Targets for combating the evolution of acquired antibiotic resistance. Biochemistry, 2015, 54: 3573-3582 [9] 马慧, 陈磊, 康薇, 等. 耐碳青霉烯类铜绿假单胞菌耐药机制及高危因素的研究进展. 广东化工, 2021, 48(12): 110-111 [10] Kobylka J, Kuth MS, Miller RT, et al. AcrB: A mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 2020, 1459: 38-68 [11] Wilson DN, Hauryliuk V, Atkinson GC, et al. Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 2020, 18: 637-648 [12] Presentato A, Piacenza E, Turner RJ, et al. Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms, 2020, 8: 2027 [13] 李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展. 应用与环境生物学报, 2021, 27(3): 1405-1414 [14] Francisco R, Alvaro O, Carlos A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology, 2006, 152: 59-66 [15] Han X, Zhou TX, Xu SW, et al. Removal of Cr(VI) and phenol coupled with the reduction of sulfate by sulfate-reducing bacteria sludge. International Journal of Environmental Science and Technology, 2017, 14: 2173-2180 [16] Patricia G, Lucélia C, Fátima MB, et al. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. New Biotechnology, 2016, 33: 216-223 [17] Raju B, Urmi H, Ashutosh K, et al. Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology, 2021, 203: 2761-2770 [18] 肖勇, 肖长烨. 微生物在不同环境下的进化机制研究进展. 华侨大学学报: 自然科学版, 2019, 40(1): 1-8 [19] 陈莫莲, 安新丽, 杨凯, 等. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展. 应用生态学报, 2021, 32(6): 2267-2274 [20] 杨永青, 许继飞, 董泰音, 等. 水体和土壤环境中抗生素抗性基因(ARGs)的污染特征和消除. 北方农业学报, 2018, 46(3): 76-82 [21] Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 5638-5638 [22] Silver S, Keach D. Energy-dependent arsenate efflux: The mechanism of plasmid-mediated resistance. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79: 6114-6118 [23] 杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散. 应用生态学报, 2013, 24(10): 2993-3002 [24] 王国兰, 冯金露, 罗玲, 等. 污水处理厂中四环素和磺胺类抗生素抗性基因的分布、传播及去除. 应用生态学报, 2019, 30(8): 2875-2882 [25] 顾佶丽, 何涛, 魏瑞成, 等. 噬菌体在细菌耐药性传播中的作用及分子机制. 畜牧与兽医, 2020, 52(11): 139-145 [26] Ryan MP, Armshaw P, O’Halloran JA, et al. Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Scientific Reports, 2017, 7: 8562 [27] Colombi E, Straub C, Kunzel S, et al. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environmental Microbiology, 2017, 19: 819-832 [28] Suzuki S, Nakanishi S, Tamminen M, et al. Occurrence of sul and tet (M) genes in bacterial community in Japanese marine aquaculture environment throughout the year: Profile comparison with Taiwanese and Finnish aquaculture waters. Science of the Total Environment, 2019, 669: 649-656 [29] Enne V, Bennett P, Livermore D, et al. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. Journal of Antimicrobial Chemotherapy, 2004, 53: 958-963 [30] Jesse C, Thomas IV, Adelumola O, et al. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microbial Biotechnology, 2020, 13: 1179-1200 [31] Knapp CW, Mccluskey SM, Singh BK, et al. Antibiotic resistance gene: Abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One, 2011, 6(5): 27300 [32] 黄福义, 周曙仡聃, 颜一军, 等. 生活垃圾渗滤液处理过程中抗生素抗性基因的变化特征. 环境科学, 2019, 40(10): 4685-4690 [33] Devarajan N, Laffite A, Graham ND, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environmental Science & Technology, 2015, 49: 6528-6537 [34] Fang L, Li X, Li L, et al. Co-spread of metal and antibiotic resistance within ST3-Inc HI2 plasmids from E. coli isolates of food-producing animals. Scientific Reports, 2016, 6: 25312 [35] Siddiqui MT, Mondal AH, Gogry FA, et al. Plasmid-mediated ampicillin, quinolone, and heavy metal co-resistance among ESBL-producing isolates from the Yamuna River, New Delhi, India. Antibiotics, 2020, 9: 826 [36] 张佳奇, 徐艳, 罗义, 等. 重金属协同选择环境细菌抗生素抗性及其机制研究进展. 农业环境科学学报, 2016, 35(3): 409-418 [37] Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2002, 46: 2124-2131 [38] Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 2007, 189: 9066-9075 [39] Baker-Austin C, Wright MS, Stepanauskas R, et al. Coselection of antibiotic and metal resistance. Trends in Microbiology, 2006, 14: 176-182 [40] 季秀玲, 魏云林, 林连兵. 细菌抗生素和重金属协同选择抗性机制研究进展. 生物技术通报, 2010(5): 65-69 [41] Perron K, Caille O, Rossier C, et al. Czc R-Czc S, a two component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2004, 279: 8761-8768 [42] Caille O, Rossier C, Perron K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. Journal of bacterio-logy, 2007, 189: 4561-4568 [43] Loo CY, Mitrakul K, Voss IB, et al. Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. Journal of Bacteriology, 2003, 185: 2887-2900 [44] Raju S, Santosh K, Pramod P, et al. Extended spectrum β-lactamase producing uropathogenic Escherichia coli and the correlation of biofilm with antibiotics resistance in Nepal. Annals of Clinical Microbiology and Antimicrobials, 2019, 18: 42 [45] Chen Z, Kim J, Jiang XP. Survival of Escherichia coli O157:H7 and Salmonella enterica in animal waste-based composts as influenced by compost type, storage condition and inoculum level. Journal of Applied Microbiology, 2018, 124:1311-1323 [46] Ulrich D, Bianca H, Ute H, et al. Genomic islands in pathogenic and environmental microorganisms. Nature Reviews Microbiology, 2004, 2: 414-424 [47] Elzbieta B, Holger B, Heiko L, et al. How to become a uropathogen: Comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 12879-12884 [48] Ogura Y, Ooka T, Asadulghani, et al. Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biology, 2007, 8: 357-371 [49] 杨盛智. 大肠杆菌、沙门氏菌中重金属抗性基因分布及共同耐药大肠杆菌E308的全基因组测序. 硕士论文. 成都: 四川农业大学, 2018 [50] Zhu YG, Johnson TA, Su JQ, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 3435-3440 [51] Hu Z, Liu Y, Chen G, et al. Characterization of organic matter degradation during composting of manure straw mixtures spiked with tetracyclines. Bioresource Technology, 2011, 102: 7329-7334 [52] Zou W, Luo Y, Zhou QX. Pollution of antibiotic resistance genes (ARGs) in livestock manure and environmental regulation. Journal of Agricultural Environment Science, 2014, 33: 2281-2287 [53] 张俊亚, 魏源送, 陈梅雪, 等. 畜禽粪便生物处理与土地利用全过程中抗生素和重金属抗性基因的赋存与转归特征研究进展. 环境科学学报, 2015, 35(4): 935-946 [54] Liao HP, Friman VP, Geisen S, et al. Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting. Science of the Total Environment, 2019, 660: 841-850 [55] Liu YW, Feng Y, Cheng DM, et al. Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. Bioresource Technology, 2018, 261: 249-256 [56] Youngquist CP, Mitchell SM, Cogger CG. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. Journal of Environment Quality, 2016, 45: 537-545 [57] Wang J, Ben W, Zhang Y, et al. Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure. Environmental Science Processes & Impacts, 2015, 17: 1654-1660 [58] 钱勋. 好氧堆肥对畜禽粪便中抗生素抗性基因的削减条件探索及影响机理研究. 博士论文. 杨凌: 西北农林科技大学, 2016 [59] 梁康, 王启烁, 王飞华, 等. 人工湿地处理生活污水的研究进展. 农业环境科学学报, 2014, 33(3): 422-428 [60] Chen J, Deng WJ, Liu YS, et al. Fate and removal of antibiotics and antibiotic resistance genes in hybrid constructed wetlands. Environmental Pollution, 2019, 249: 894-903 [61] 郑吉, 郭莉, 刘扬, 等. 生态湿地中抗生素抗性基因的污染控制研究. 环境污染与防治, 2020, 42(11): 1363-1367 [62] 吴雨涵, 余俊, 王锐涵. 不同配置人工湿地植物群落对生活污水净化效果. 水土保持研究, 2019, 26(6): 364-371 [63] Huang X, Zheng J, Liu C, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chemical Engineering Journal, 2017, 308: 692-699 [64] Guo X, Zhu L, Zhong H, et al. Response of antibiotic and heavy metal resistance genes to tetracyclines and copper in substrate-free hydroponic microcosms with Myriophyllum aquaticum. Journal of Hazardous Materials, 2021, 413: 125444 [65] Zheng LB, Tong J, Wei YS, et al. The progress of magnetic separation technology in water treatment. Acta Scientiae Circumstantiae, 2016, 36: 3103-3117 [66] 于雯超, 郑利兵, 魏源送, 等. 磁混凝对市政污水中抗生素抗性基因和重金属抗性基因的削减效能. 环境科学, 2020, 41(2): 815-822 [67] Su HC, Liu YS, Pan CG, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Science of the Total Environment, 2018, 616: 453-461 [68] Li N, Sheng GP, Lu YZ, et al. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 2017, 111: 204-212 [69] 张启伟, 孙丽华, 史鹏飞, 等. 混凝沉淀-UF工艺去除二级出水中ARGs效能研究. 环境科学研究, 2019, 32(4): 718-724 [70] Chang PH, Juhrend B, Olson TM, et al. Degradation of Extracellular antibiotic resistance genes with UV254 treatment. Environmental Science & Technology, 2017, 51: 6185-6192 [71] 秦丽婷, 童蕾,刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状. 环境化学, 2016, 35(5): 875-883 [72] 赵丽红, 聂飞. 水处理高级氧化技术研究进展. 科学技术与工程, 2019, 19(10): 1-9 [73] 陈家斌, 周雪飞, 张亚雷. 水环境中PPCPs的臭氧氧化和高级氧化技术. 给水排水, 2009, 35(增刊2): 85-90 [74] Pei J, Yao H, Wang H, et al. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes. Water Research, 2016, 99: 122-128 [75] 刘杨先, 张军. UV/H2O2高级氧化工艺反应机理与影响因素最新研究进展. 化学工业与工程技术, 2011, 32(3): 18-24 [76] Kalisvaart BF. Reuse of wastewater: Preventing the recovery of pathogens by using medium-pressure UV lamp technology. Water Science and Technology, 2004, 50: 337-344 [77] Zhang YY, Zhuang Y, Geng JJ, et al. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Science of the Total Environment, 2016, 550: 184-191 [78] 王茹. 论TiO2光催化氧化技术在水处理中的研究进展. 化工管理, 2017(27): 159 [79] Guo CS, Wang K, Hou S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. Journal of Hazardous Materials, 2017, 323: 710-718 [80] Dunlop PSM, Ciavola M, Rizzo L, et al. Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater. Catalysis Today, 2015, 240: 55-60 [81] Rizzo L, Sala AD, Fiorentino A, et al. Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Research, 2014, 53: 145-152 [82] Mcs A, Rondon P, Gffp A , et al. Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives. Science of the Total Environment, 2021, 786: 147448 [83] Karaolia P, Michael-Kordatou I, Hapeshi E, et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Applied Catalysis B: Environmental, 2018, 224: 810-824 [84] Dirany A, Sirés I, Oturan N, et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 2010, 81: 594-602 [85] Stefanos G, Truong-Thien ML, Manuel EJ, et al. Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Research, 2018, 143: 334-345 [86] 白芷烨, 汪雯, 吉小凤, 等. CRISPR在食源性致病菌进化分析、检测分型及毒力耐药调控中的应用进展. 生物工程学报, 2021, 37(7): 1-11 [87] Zhang Q, Zhang Z, Zhou S, et al. Macleaya cordata extract, an antibiotic alternative, does not contribute to antibiotic resistance gene dissemination. Journal of Hazardous Materials, 2021, 412: 125272 [88] 希区客. 噬菌体:可以帮助击败超级细菌的微小病毒. 世界科学, 2020(11): 26-27 [89] Górski A, Midzybrodzki R, Obocka M, et al. Phage therapy: What have we learned? Viruses, 2018, 10: 288 [90] 陈慧钰, 文湘华, 张冰, 等. 大型溞对水环境中抗生素抗性菌与抗性基因的摄食与去除. 环境科学学报, 2021, 41(2): 460-468 [91] Zhu D, DelgadoBaquerizo M, Su JQ, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environmental Science & Technology, 2021, 55: 7445-7455 [92] Huang K, Xia H, Wu Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresource Technology, 2018, 259: 32-39 |
[1] | 冯嘉仪, 阮可瑾, 苏思宁, 张学平, 吴道铭, 万利鑫, 曾曙才. 构树的污泥适应性及养分和重金属吸收累积特征 [J]. 应用生态学报, 2022, 33(6): 1629-1638. |
[2] | 吴磊, 孙奇, 赵骥民, 王德利, 张彦文. 花部重金属积累对植物-传粉昆虫互惠关系影响的研究进展 [J]. 应用生态学报, 2022, 33(5): 1429-1434. |
[3] | 董晓全, 邢鹤严, 张书源, 陈佳倩, 谢子曦, 邓文琪, 于珊, 吴道铭. 表施和混施污泥对团花根系生长的影响 [J]. 应用生态学报, 2022, 33(12): 3388-3394. |
[4] | 霍彦慧, 王美娥, 姜瑢, 陈卫平. 典型矿冶区周边土壤微生物功能特征及影响因素 [J]. 应用生态学报, 2022, 33(12): 3403-3409. |
[5] | 杨富玲, 石杨, 李斌, 杜志烨, 汪梦婷, 廖恒毅, 陈稷, 黄进. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景 [J]. 应用生态学报, 2021, 32(7): 2623-2632. |
[6] | 方笑堃, 陈志炜, 程兆康, 姜海波, 邱丹, 罗小三. 太阳辐射减弱对水稻光合生理特性和中微量元素积累的影响 [J]. 应用生态学报, 2021, 32(4): 1345-1351. |
[7] | 杨源通, 曾曙才, 冯嘉仪, 彭维新, 吴道铭. 施用污泥等废料对稀土矿废弃地土壤中麻疯树生长和元素吸收的影响 [J]. 应用生态学报, 2021, 32(2): 609-617. |
[8] | 唐敏, 张欣, 谭欣蕊, 刘燕, 王美仙. 锌在3种乔木中的积累及其亚细胞分布和化学形态 [J]. 应用生态学报, 2021, 32(12): 4298-4306. |
[9] | 樊瑾,李诗瑶,杜雅仙,王融融,余海龙,黄菊莹. 火电厂周边不同生物结皮细菌群落特征差异及其影响因素 [J]. 应用生态学报, 2021, 32(11): 4107-4118. |
[10] | 张俊华, 尚天浩, 刘吉利, 孙媛, 贾萍萍. 宁夏西吉县养牛场粪污和周边土壤重金属及细菌群落特征 [J]. 应用生态学报, 2020, 31(9): 3119-3130. |
[11] | 解雪峰, 孙晓敏, 吴涛, 蒋国俊, 濮励杰, 项琦. 互花米草入侵对滨海湿地生态系统的影响研究进展 [J]. 应用生态学报, 2020, 31(6): 2119-2128. |
[12] | 陈瑾, 王建武, 舒迎花. 重金属污染影响植食性昆虫的研究进展 [J]. 应用生态学报, 2020, 31(5): 1773-1782. |
[13] | 徐玉玲, 冯巩俐, 蒋晓煜, 刘娜, 李嘉敏, 黎桂英, 杨颖丽. 兰州市某交通干道土壤重金属分布特征及其对绿化植物的影响 [J]. 应用生态学报, 2020, 31(4): 1341-1348. |
[14] | 常文静, 李枝坚, 周妍姿, 曾辉. 深圳市不同功能区土壤表层重金属污染及其综合生态风险评价 [J]. 应用生态学报, 2020, 31(3): 999-1007. |
[15] | 李玄添, 张风宝, 杨明义. 渭河陕西段沉积物重金属空间分布及来源解析 [J]. 应用生态学报, 2020, 31(12): 4225-4234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||