[1] Bowman DMJS, Balch JK, Artaxo P, et al. Fire in the Earth System. Science, 2009, 324: 481-484 [2] 李世友, 马长乐, 袁俊杰, 等. 昆明地区18种乡土树种对火的生态适应对策. 林业调查规划, 2008, 33(5): 84-87 [3] Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61: 167-234 [4] Romero C. Bark: Structure and functional ecology. Advances in Economic Botany, 2014, 17: 5-25 [5] Hoffmann WA, Orthen B, Nascimento PKVD. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, 2003, 17: 720-726 [6] Pausas JG. Bark thickness and fire regime. Functional Ecology, 2015, 29: 315-327 [7] Rosell JA, Gleason S, Méndez-Alonzo R, et al. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 2014, 201: 486-497 [8] Espinosa J, Rodríguez de Rivera O, Madrigal J, et al. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. Forest Ecology and Management, 2020, 474: 118372 [9] Wei R, Yang G, Zhang JL, et al. The thermal insulation properties of oak (Quercus mongolica) bark and the applicability of stem heating models. International Journal of Wildland Fire, 2019, 28: 969-980 [10] Michaletz ST, Johnson EA. How forest fires kill trees: A review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 2007, 22: 500-515 [11] Nolan RH, Rahmani S, Samson SA, et al. Bark attri-butes determine variation in fire resistance in resprouting tree species. Forest Ecology and Management, 2020, 474: 118385 [12] 遆萌萌. 火烧和氮添加对气候过渡带针阔混交林叶片功能性状的影响. 硕士论文. 开封: 河南大学, 2019 [13] 孙龙, 包满意, 胡同欣, 等. 火烧强度对白桦枝叶生态化学计量特征的影响. 东北林业大学学报, 2022, 50(3): 64-69 [14] 邱扬, 李湛东, 于汝元. 白桦种群的稳定性与火干扰关系的研究. 植物研究, 1998, 18(3): 321-327 [15] 王荣, 胡海清. 白桦叶片对火烧的生理响应及火后恢复研究. 北京林业大学学报, 2013, 35(6): 1-6 [16] Loram-Lourenço L, Farnese FD, de Sousa LF, et al. A structure shaped by fire, but also water: Ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado. Frontiers in Plant Science, 2020, 10: 1718 [17] 殷东生, 张海峰, 王福德, 等. 小兴安岭白桦种群径级结构与生命表分析. 林业科技开发, 2009, 23(6): 40-43 [18] Richardson SJ, Laughlin DC, Lawes MJ, et al. Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities. American Journal of Botany, 2015, 102: 1590-1598 [19] Hoffmann WA, Adasme R, Haridasan M, et al. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 2009, 90: 1326-1337 [20] Midgley JJ, Lawes MJ. Relative bark thickness: Towards standardised measurement and analysis. Plant Ecology, 2016, 217: 677-681 [21] Lawes MJ, Midgley JJ, Clarke PJ. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. Journal of Ecology, 2013, 101: 517-524 [22] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [23] 张峰, 张金屯, 张峰. 历山自然保护区猪尾沟森林群落植被格局及环境解释. 生态学报, 2003, 23(3): 421-427 [24] Rosell JA, Olson ME, Anfodillo T, et al. Exploring the bark thickness-stem diameter relationship: Clues from lianas, successive cambia, monocots and gymnosperms. New Phytologist, 2017, 215: 569-581 [25] Graves SJ, Rifai SW, Putz FE. Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). American Journal of Botany, 2014, 101: 2183-2188 [26] 蒋有绪. 谈谈我国大兴安岭的特大森林火灾. 生物学通报, 1987(11): 18-20 [27] Jackson JF, Adams DC, Jackson UB. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. The American Naturalist, 1999, 153: 614-632 [28] Beaty RM, Taylor AH. Fire disturbance and forest structure in old-growth mixed conifer forests in the northern Sierra Nevada, California. Journal of Vegetation Science, 2010, 18: 879-890 [29] West AG, Nel JA, Bond WJ, et al. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytologist, 2016, 211: 828-838 [30] Poorter L, Mcneil A, Hurtado VH, et al. Bark traits and life history strategies of tropical dry- and moist forest trees. Functional Ecology, 2014, 28: 232-242 [31] Brando PM, Nepstad DC, Balch JK, et al. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 2012, 18: 630-641 [32] Collins L. Eucalypt forests dominated by epicormic resprouters are resilient to repeated canopy fires. Journal of Ecology, 2019, 108: 310-324 [33] Hengst GE, Dawson JO. Bark properties and fire resis-tance of selected tree species from the central hardwood region of North America. Canadian Journal of Forest Research, 1994, 24: 688-696 [34] 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展. 林业科学, 2018, 54(7): 130-136 [35] 妥彬. 浙东森林木本植物树皮性状及其功能策略. 硕士论文. 上海: 华东师范大学, 2019 [36] Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78: 9-19 [37] 任洁, 王慧梅, 王文杰, 等. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响. 植物研究, 2014, 34(6): 758-764 [38] 杨巧, 朱润军, 杨畅宇, 等. 基于树形结构的木棉叶功能性状差异性研究. 生态学报, 2022, 42(7): 2834-2842 [39] 王鼎, 周梅, 赵鹏武, 等. 林火干扰对兴安落叶松林土壤化学性质的影响. 东北林业大学学报, 2018, 46(5): 33-37 [40] 段媛媛, 宋丽娟, 牛素旗, 等. 不同林龄刺槐叶功能性状差异及其与土壤养分的关系. 应用生态学报, 2017, 28(1): 28-36 [41] 陶玉柱, 邸雪颖. 火对森林土壤微生物群落的干扰作用及其机制研究进展. 林业科学, 2013, 49(11): 146-157 [42] Zhang Q, Wei W, Chen L, et al. Soil water availability drives changes in community traits along a hydrothermal gradient in loess plateau grasslands. Rangeland Ecology & Management, 2020, 73: 276-284 [43] 杨永兴, 杨玉娟, 庞志平, 等. 大兴安岭地区森林沼泽生态系统火生态效应研究. 海洋与湖沼, 1995, 26(6): 610-618 [44] 解开治, 徐培智, 严超, 等. 不同土壤改良剂对南方酸性土壤的改良效果研究. 中国农学通报, 2009, 25(20): 160-165 [45] 钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 2018, 42(5): 562-572 [46] 范瑞瑞. 武夷山59种木本植物树皮、茎干、叶片功能性状特征及其关联研究. 硕士论文. 福州: 福建师范大学, 2018 [47] 郑大柽, 秦倩倩, 邱聪, 等. 重度火烧1年后林下植被的物种多样性及叶功能性状. 应用与环境生物学报, 2022, 28(6): 1601-1607 [48] Pausas JG. Bark thickness and fire regime: Another twist. New Phytologist, 2017, 213: 13-15 [49] 栗马玲, 宋沼鹏, 刘艳红, 等. 火烧强度对兴安落叶松群落叶片功能性状及功能多样性的影响. 应用生态学报, 2019, 30(12): 4021-4030 [50] 洪娇娇, 陈宏伟, 齐淑艳, 等. 火干扰强度对大兴安岭森林地上植被碳储量的影响. 应用生态学报, 2017, 28(8): 2481-2487 [51] 顾泽, 王博, 陈思帆, 等. 不同火烈度火烧迹地内油松叶功能性状的变化. 应用生态学报, 2022, 33(6): 1497-1504 |