[1] |
Zhang JH, Li MX, Xu L, et al. C∶N∶P stoichiometry in terrestrial ecosystems in China. Science of the Total Environment, 2021, 795: 148849
|
[2] |
Cui YX, Fang LC, Guo XB, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Pla-teau, China. Soil Biology and Biochemistry, 2018, 116: 11-22
|
[3] |
Zhang JY, Ai ZM, Liang CT, et al. How microbes cope with short-term N addition in a Pinus tabuliformis forest-ecological stoichiometry. Geoderma, 2019, 337: 630-640
|
[4] |
周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 2016, 40(12): 1257-1266
|
[5] |
周正虎, 王传宽. 帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征. 生态学报, 2017, 37(7): 2428-2436
|
[6] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 2014, 5: 1-10
|
[7] |
Zhong ZK, Zhang XY, Wang X, et al. Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 2020, 448: 183-200
|
[8] |
Shao PS, Liang C, Rubert-Nason K, et al. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter. Soil Biology and Biochemistry, 2019, 128: 56-65
|
[9] |
Zhang W, Qiao WJ, Gao DX, et al. Relationship between soil nutrient properties and biological activities along a restoration chrono sequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. Catena, 2018, 161: 85-95
|
[10] |
曹润, 王邵军, 陈闽昆, 等. 西双版纳热带森林不同恢复阶段土壤微生物生物量碳的变化. 生态环境学报, 2019, 28(10): 1982-1990
|
[11] |
Jia GM, Cao J, Wang C, et al. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwuling, Northwest China. Forest Ecology and Management, 2005, 217: 117-125
|
[12] |
魏媛, 张金池, 俞元春, 等. 退化喀斯特植被恢复过程中土壤微生物活性的季节动态——以贵州花江喀斯特峡谷地区为例. 新疆农业大学学报, 2009, 32(6): 1-7
|
[13] |
陈璟, 杨宁. 衡阳紫色土丘陵坡地自然恢复过程中微生物量碳动态变化. 生态环境学报, 2012, 21(10): 1670-1673
|
[14] |
胡宗达, 刘世荣, 刘兴良, 等. 川西亚高山天然次生林不同演替阶段土壤-微生物生物量及其化学计量特征. 生态学报, 2021, 41(12): 4900-4912
|
[15] |
蒋光毅, 黄嵩, 郭宏忠. 三峡库区水土流失综合治理现状与展望. 中国水土保持, 2021(8): 27-29
|
[16] |
潘磊, 唐万鹏, 肖文发, 等. 三峡库区不同退耕还林模式林地水文效应. 水土保持通报, 2012, 32(5): 103-106
|
[17] |
李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16
|
[18] |
姚泽秀, 李永春, 李永夫, 等. 植茶年限对土壤微生物群落结构及多样性的影响. 应用生态学报, 2020, 31(8): 2749-2758
|
[19] |
黑杰, 金强, 杨文文, 等. 福州市不同种植年限茉莉花园土壤碳、氮、磷及生态化学计量比特征. 水土保持学报, 2020, 57(4): 288-296
|
[20] |
王晟强, 张喆, 叶绍明. 桂南茶园土壤团聚体酶活性对植茶年限的响应. 生态学报, 2020, 40(18): 6532-6541
|
[21] |
李梦菡, 张丽平, 李鑫, 等. 茶园土壤微生物量碳的质量分数及其影响因素的研究. 中国土壤与肥料, 2021(1): 26-33
|
[22] |
张冠华, 易亮, 孙宝洋, 等. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响. 应用生态学报, 2022, 33(7): 1791-1800
|
[23] |
Brookes PC, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17: 837-842
|
[24] |
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707
|
[25] |
Joergensen RG. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology and Biochemistry, 1996, 28: 33-37
|
[26] |
赵杏, 钟一铭, 杨京平, 等. 不同植茶年限土壤碳氮养分及胞外酶对干旱胁迫的响应. 生态学报, 2017, 37(2): 387-394
|
[27] |
Han WY, Kemmitt SJ, Brookes PC. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biology and Biochemistry, 2007, 39: 1468-1478
|
[28] |
贺婧, 魏琪琪, 钟艳. 贺兰山东麓不同种植年限葡萄地土壤生态化学计量特征. 干旱地区农业研究, 2020, 38(5): 23-30
|
[29] |
Wang SQ, Li TX, Zheng ZC, et al. Soil organic carbon and nutrients associated with aggregate fractions in a chronosequence of tea plantations. Ecological Indicators, 2019, 101: 444-452
|
[30] |
淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征. 干旱区研究, 2018, 35(4): 789-795
|
[31] |
胡启武, 聂兰琴, 郑艳明, 等. 沙化程度和林龄对湿地松叶片及林下土壤C,N,P化学计量特征影响. 生态学报, 2014, 34(9): 2246-2255
|
[32] |
郭其强, 盘金文, 李慧娥, 等. 贵州高原山地马尾松人工林土壤碳、氮、磷生态化学计量特性. 水土保持学报, 2019, 33(4): 293-298
|
[33] |
Li JW, Liu YL, Hai XY, et al. Dynamics of soil microbial C:N:P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment. Science of the Total Environment, 2019, 693: 133613
|
[34] |
Cleveland CC, Liptzin D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85: 235-252
|
[35] |
吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应. 应用生态学报, 2019, 30(8): 2691-2698
|
[36] |
Xu X, Schimel JP, Thornton PE, et al. Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models. Ecology Letters, 2014, 17: 547-555
|
[37] |
Zhou ZH, Wang CK. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems. Biogeosciences, 2015, 12: 6751-6760
|