[1] Girardin MP, Hogg EH, Bernier PY, et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biology, 2016, 22: 627-643 [2] 刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响. 自然资源学报, 2001, 16(1): 71-78 [3] 张贇, 尹定财, 田昆, 等. 滇西北海拔上限大果红杉径向生长对气候变化的响应. 应用生态学报, 2017, 28(9): 2805-2812 [4] 郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27(2): 354-364 [5] 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理. 生态学报, 2013, 33(18): 5477-5483 [6] 史丰鸣, 杨睿, 石松林, 等. 川西南高山松径向生长对气候响应的时空分异特征. 山地学报, 2023, 41(4): 478-492 [7] 李镇江, 于晨一, 刘升云, 等. 伏牛山南坡3种针叶树径向生长对气候变化的响应. 应用生态学报, 2023, 34(5): 1178-1186 [8] Li T, Li JB. A 564-year annual minimum temperature reconstruction for the east central Tibetan Plateau from tree rings. Global and Planetary Change, 2017, 157: 165-173 [9] Köner C, Paulsen J. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 2004, 31: 713-732 [10] Lyu LX, Zhang QB, Pellatt MG, et al. Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia, 2019, 53: 40-47 [11] 曹宗英, 勾晓华, 刘文火, 等. 祁连山中部青海云杉上下限树轮宽度年表对气候的响应差异. 干旱区资源与环境, 2014, 28(7): 29-34 [12] 曾令兵, 王襄平, 常锦峰, 等. 祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系. 北京林业大学学报, 2012, 34(5): 50-56 [13] 王艳璐, 尤庆敏, 于潘, 等. 四川亚丁自然保护区硅藻植物分类研究. 上海师范大学学报: 自然科学版, 2018, 47(5): 585-591 [14] 尹学明, 赵芳, 伍杰, 等. 四川稻城亚丁自然保护区主要植被类型. 四川林业科技, 2013, 34(4): 50-54 [15] Fan ZX, Bräning A, Cao KF. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. International Journal of Climatology, 2008, 28: 1879-1887 [16] 勾晓华, 杨梅学, 彭剑峰, 等. 树轮记录的阿尼玛卿山区过去830年夏半年最高温变化. 第四纪研究, 2006, 26(6): 991-998 [17] 岳伟鹏, 陈峰, 袁玉江, 等. 气候变暖背景下云南西北部大果红杉径向生长衰退及其气候驱动因子分析. 生态学报, 2022, 42(6): 2331-2341 [18] Fan ZX, Bräning A, Cao KF, et al. Growth-climate responses of high-elevation conifers in the central Heng-duan Mountains, southwestern China. Forest Ecology and Management, 2009, 258: 306-313 [19] Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia, 2008, 26: 115-124 [20] 刘娟, 邓徐, 吕利新. 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性. 植物生态学报, 2015, 39(5): 442-452 [21] Lyu LX, Zhang QB. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. Journal of Plant Ecology, 2012, 5: 147-156 [22] 刁浩宇, 王安志, 袁凤辉, 等. 特定化合物同位素分析技术在树木非结构性碳水化合物研究中的应用. 应用生态学报, 2020, 31(12): 4291-4300 [23] Tcherkez G, Nogués S, Bleton J, et al. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiology, 2003, 131: 237-244 [24] 张萌, 石松林, 石春明, 等. 川西高原4种典型针叶树径向生长对气候因子的响应. 生态学杂志, 2021, 40(7): 1947-1957 [25] 杨小林, 崔国发, 任青山, 等. 西藏色季拉山林线植物群落多样性格局及林线的稳定性. 北京林业大学学报, 2008, 30(1): 14-21 [26] 樊志颖, 李江荣, 陈康, 等. 藏东南色季拉山林线植物非结构性碳水化合物的季节变动. 西北农林科技大学学报: 自然科学版, 2022, 50(3): 40-48 [27] Guo MM, Zhang YD, Liu SR, et al. Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming. Agricultural and Forest Meteorology, 2019, 276-277: 107631 [28] Guo MM, Zhang YD, Wang XC, et al. The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. Forest Eco-logy and Management, 2018, 425: 21-26 [29] 赵志江, 谭留夷, 康东伟, 等. 云南小中甸地区丽江云杉径向生长对气候变化的响应. 应用生态学报, 2012, 23(3): 603-609 [30] 张卫国, 肖德荣, 田昆, 等. 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应. 生态学报, 2017, 37(11): 3796-3804 [31] 李静茹, 彭剑峰, 杨柳, 等. 川西高原两种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3512-3520 [32] Frank D, Esper J. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia, 2005, 22: 107-121 [33] 李宗善, 刘国华, 张齐兵, 等. 利用树木年轮宽度资料重建川西卧龙地区过去159年夏季温度的变化. 植物生态学报, 2010, 34(6): 628-641 [34] Zhang Y, Bergeron Y, Zhao XH, et al. Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. Journal of Plant Ecology, 2015, 8: 368-379 [35] 王林, 冯锦霞, 王双霞, 等. 干旱和坡向互作对栓皮栎和侧柏生长的影响. 生态学报, 2013, 33(8): 2425-2433 [36] IPCC. AR6 Synthesis Report: Climate Change 2023 [EB/OL]. (2023-03-08) [2023-10-08]. https://www.ipcc.ch/ [37] Peters DPC. Plant species dominance at a grassland-shrubland ecotone: An individual-based gap dynamics model of herbaceous and woody species. Ecological Mode-lling, 2002, 152: 5-32 [38] D'Arrigo RD, Kaufmann RK, Davi N, et al. Thre-sholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Bio-geochemical Cycles, 2004, 18: GB3021 [39] James JC, Grace J, Hoad SP. Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. Journal of Ecology, 1994, 82: 297-306 [40] 郭其强, 卢杰, 罗大庆, 等. 西藏色季拉山阳坡林线方枝柏种群结构特征研究. 西北林学院学报, 2010, 25(2): 15-18 [41] Smith M. Alpine treelines: Functional ecology of the global high elevation tree limits. Mountain Research and Development, 2013, 33: 357 [42] 盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展. 生态学杂志, 2017, 36(11): 3273-3280 [43] 张慧, 付培立, 林友兴, 等. 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应. 应用生态学报, 2022, 33(11): 2881-2888 [44] 郭明明, 张远东, 王晓春, 等. 升温突变对川西马尔康树木生长的影响. 生态学报, 2015, 35(22): 7464-7474 [45] 彭钟通, 郭明明, 张远东, 等. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响. 生态学报, 2021, 41(20): 8202-8211 |