[1] Choat B, Jansen S, Brodribb T, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-755 [2] 罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节. 应用生态学报, 2019, 30(12): 4333-4343 [Luo D-D, Wang C-K, Jin Y. Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 2019, 30(12): 4333-4343] [3] Tyree MT, Sperry JS. Vulnerability of xylem to cavita-tion and embolism. Annual Review of Plant Physiology, 1989, 40: 19-36 [4] 王林, 代永欣, 郭晋平, 等. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用. 林业科学, 2016, 52(6): 1-9 [Wang L, Dai Y-X, Guo J-P, et al. Interaction of hydraulic failure and carbon starvation on Robinia pseudoacacia seedlings during drought. Scientia Silvae Sinicae, 2016, 52(6): 1-9] [5] Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 2016, 211: 386-403 [6] 王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 2010, 21(12): 3255-3265 [Wang Q-W, Yu D-P, Dai L-M, et al. Research progress in water use efficiency of plants under global climate change. Chinese Journal of Applied Ecology, 2010, 21(12): 3255-3265] [7] Brodersen CR, Germino MJ, Smith WK, et al. Photosynthesis during an episodic drought in Abies lasiocarpa and Picea engelmannii across an alpine treeline. Arctic, Antarctic, and Alpine Research, 2006, 38: 34-41 [8] 赵长明, 高贤良, 马仁义, 等. 祁连圆柏和青海云杉幼苗生理生态特征对土壤干旱胁迫的响应. 冰川冻土, 2012, 34(1): 147-154 [Zhao C-M, Gao X-L, Ma R-Y, et al. Responses of Sabina przewalskii and Picea crassifolia seedlings to different draught stress of soil in ecophysiological characteristics. Journal of Glaciology and Geocryology, 2012, 34(1): 147-154] [9] He MZ, Zhang K, Tan HJ, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology and Evolution, 2015, 5: 1494-1503 [10] McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 2011, 155: 1051-1059 [11] 罗大庆, 郭其强, 王贞红, 等. 西藏半干旱区3种柏树对干旱胁迫的生理响应特征. 西北植物学报, 2011, 31(8): 1611-1617 [Luo D-Q, Guo Q-Q, Wang Z-H, et al. Physiological response of three cypress species to drought stress in semi-arid region of Tibet. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(8): 1611-1617] [12] Yu DP, Wang GG, Dai LM, et al. Dendroclimatic analysis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain, Northeast China. Forest Ecology and Management, 2007, 240: 105-113 [13] 王庆伟, 齐麟, 田杰, 等. 海拔梯度对长白山北坡岳桦水分利用效率的影响. 应用生态学报, 2011, 22(9): 2227-2232 [Wang Q-W, Qi L, Tian J, et al. Effects of altitudinal gradient on water use efficiency of Betula ermanii on the northern slope of Changbai Mountain, Northeast China. Chinese Journal of Applied Eco-logy, 2011, 22(9): 2227-2232] [14] Yu DP, Wang QW, Liu JQ, et al. Formation mechanisms of the alpine Erman’s birch (Betula ermanii) treeline on Changbai Mountain in Northeast China. Trees-Structure and Function, 2014, 28: 935-947 [15] 周驿之, 程艳霞, 樊莹, 等. 长白山不同海拔白桦幼苗移栽至同一生境的光合及反射光谱特性. 生态学报, 2018, 38(14): 5109-5119 [Zhou Y-Z, Cheng Y-X, Fan Y, et al. Characteristics of photosynthesis and spectral reflectance in Betula platyphylla from different altitudes transplanted to the same habit on the Changbai Mountain. Acta Ecologica Sinica, 2018, 38(14): 5109-5119] [16] Osaki M, Shinano T, Tadano T. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Science and Plant Nutrition, 1991, 37: 117-128 [17] 鲍婧婷, 王进, 苏洁琼. 不同林龄柠条的光合特性和水分利用特征. 中国沙漠, 2016, 36(1): 201-207 [Bao J-T, Wang J, Su J-Q. Photosynthetic properties and water use characteristics in Caragana korshinskii in different ages. Journal of Desert Research, 2016, 36(1): 201-207] [18] 崔婉莹, 刘思佳, 魏亚伟, 等. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响. 应用生态学报, 2019, 30(5): 1454-1462 [Cui W-Y, Liu S-J, Wei Y-W, et al. Effects of nitrogen addition on biomass allocation of Pinus koraiensis and Fraxinus mandshurica seedlings under water stress. Chinese Journal of Applied Ecology, 2019, 30(5): 1454-1462] [19] 赵瑜琦, 高苗琴, 李涛, 等. 干旱胁迫对群众杨光合特性与器官干物质分配的影响. 生态学报, 2020, 40(5): 1683-1689 [Zhao Y-Q, Gao M-Q, Li T, et al. Effects of water stress on leaf gas exchange and biomass allocation of Populus×popularis ‘35-44’ cuttings. Acta Ecologica Sinica, 2020, 40(5): 1683-1689] [20] Gieger T, Leuschner C. Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora, 2004, 199: 100-109 [21] Arx GV, Arzac A, Fonti P, et al. Responses of sapwood ray parenchyma and non-structural carbohydrates of Pinus sylvestris to drought and long-term irrigation. Functional Ecology, 2017, 31: 1371-1382 [22] 王凯, 沈潮, 曹鹏, 等. 沙地樟子松幼苗干旱致死过程中非结构性碳水化合物的变化. 应用生态学报, 2018, 29(11): 3513-3520 [Wang K, Shen C, Cao P, et al. Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality. Chinese Journal of Applied Ecology, 2018, 29(11): 3513-3520] [23] 沈超, 纪若璇, 于笑, 等. 蒙古莸幼苗干旱致死过程中非结构性碳水化合物的变化. 应用生态学报, 2019, 30(8): 2541-2548 [Shen C, Ji R-X, Yu X, et al. Changes of non-structural carbohydrates in Caryop-teris mongolica seedlings during the process of drought-induced mortality. Chinese Journal of Applied Ecology, 2019, 30(8): 2541-2548] [24] Zhang T, Cao Y, Chen YM, et al. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continuous drought stress. Trees, 2015, 29: 1837-1849 [25] Hartmann H, Ziegler W, Kolle O, et al. Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 2013, 200: 340-349 [26] 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报, 2014, 34(21): 6090-6100 [Du Y, Han Y, Wang C-K. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica, 2014, 34(21): 6090-6100] [27] 张婷. 干旱胁迫对刺槐和油松幼苗非结构性碳水化合物的影响. 博士论文. 北京: 中国科学院大学, 2018 [Zhang T. Effects of Drought Stress on Nonstructural Carbohydrates in Robinia pseudoacacia and Pinus tabuliformis Saplings. PhD Thesis. Beijing: University of Chinese Academy of Sciences, 2018] [28] 张继义, 付丹, 魏珍珍, 等. 科尔沁沙地几种乔灌木树种耐受极端土壤水分条件与生存能力野外实地测定. 生态学报, 2006, 26(2): 467-474 [Zhang J-Y, Fu D, Wei Z-Z, et al. Determination of the ability of several tree and shrub species to endure and survive extreme aridity with methods of limited areas under field condition in Horqin Sandy Land. Acta Ecologica Sinica, 2006, 26(2): 467-474] [29] Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: Feast or famine? Tree Physiology, 2012, 32: 764-775 [30] 王宗琰, 王凯, 姜涛, 等. 油松幼苗非结构性碳水化合物对干旱胁迫的阶段性响应. 植物研究, 2018, 38(3): 460-466 [Wang Z-Y, Wang K, Jiang T, et al. Staged responses of non-structural carbohydrates of Pinus tabuliformis seedlings to drought stress. Bulletin of Botanical Research, 2018, 38(3): 460-466] [31] Wang Q, Qi L, Zhou W, et al. Carbon dynamics in the deciduous broadleaf tree Erman’s birch (Betula ermanii) at the subalpine treeline on Changbai Mountain, Northeast China. American Journal of Botany, 2018, 105: 42-49 |