[1] Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449 [2] Cox PM, Pearson D, Booth BB, et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494: 341-344 [3] IPCC. Climate Change 2022: Mitigation of Climate Change. Working Group Ⅲ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022 [4] Allen CD, Macalady AK, Chenchouni H, et al. A glo-bal overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259: 660-684 [5] Tonelli E, Vitali A, Brega F, et al. Thinning improves growth and resilience after severe droughts in Quercus subpyrenaica coppice forests in the Spanish Pre-Pyrenees. Dendrochronologia, 2023, 77: 126042 [6] Aldea J, Bravo F, Bravo-Oviedo A, et al. Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands. Agricultu-ral and Forest Meteorology, 2017, 237: 371-383 [7] Bottero A, D'Amato AW, Palik BJ, et al. Density-dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 2017, 54: 1605-1614 [8] Sun SJ, Lei S, Jia HS, et al. Tree-ring analysis reveals density-dependent vulnerability to drought in planted Mongolian pines. Forests, 2020, 11: 98 [9] 阎弘, 孙滢洁, 刘滨辉. 竞争对红松树木的干旱适应性及生长衰退影响. 北京林业大学学报, 2022, 44(6): 1-9 [10] 张大力, 李永东, 李伟鑫, 等. 间伐对塞罕坝华北落叶松干旱抗性的影响. 林业与生态科学, 2023, 38(2): 161-166 [11] Houtmeyers S, Brunner A. Individual tree growth responses to coinciding thinning and drought events in mixed stands of Norway spruce and Scots pine. Forest Ecology and Management, 2022, 522: 120447 [12] Kwon S. 沙地樟子松天然林林分结构及气候对其生长的影响. 博士论文. 北京: 北京林业大学, 2019 [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级(GB/T20481—2017). 北京: 中国标准出版社, 2017 [14] Lloret F, Keeling EG, Sala A. Components of tree resi-lience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [15] 刘亚玲, 信忠保, 李宗善, 等. 河北坝上樟子松人工林径向生长及其对气候因素的响应. 生态学报, 2022, 42(5): 1830-1840 [16] Payette S, Filion L, Delwaide A. Disturbance regime of a cold temperate forest as deduced from tree-ring patterns: The Tantaré Ecological Reserve, Quebec. Cana-dian Journal of Forest Research, 1990, 20: 1228-1241 [17] Nowacki GJ, Abrams MD. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs, 1997, 67: 225-249 [18] Kunz J, Löffler G, Bauhus J. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 2018, 414: 15-27 [19] 董燕. 腾格里沙漠东南缘昌岭山主要树种对干旱的生态弹性研究. 硕士论文. 大连: 辽宁师范大学, 2023 [20] 熊千志, 杜恩在, 薛峰, 等. 塞罕坝地区人工针叶林径向生长对水热条件的响应. 生态学报, 2022, 42(13): 5371-5380 [21] Mainali J, All J, Jha PK, et al. Responses of montane forest to climate variability in the central Himalayas of Nepal. Mountain Research and Development, 2015, 35: 66-77 [22] 管崇帆, 郑京生, 李雅婧, 等. 气候和密度对刺槐径向生长和干旱脆弱性的影响. 生态学报, 2023, 43(8): 3261-3272 [23] McCauley LA, Bradford JB, Robles MD, et al. Landscape-scale forest restoration decreases vulnerability to drought mortality under climate change in southwest USA ponderosa forest. Forest Ecology and Management, 2022, 509: 120088 [24] Fang O, Zhang QB. Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 2019, 25: 245-253 [25] 张晓英, 王飞, 铁牛. 兴安落叶松林径向生长与气候因子的关系. 林业调查规划, 2021, 46(6): 106-113 [26] Helman D, Lensky IM, Yakir D, et al. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. Global Change Biology, 2017, 23: 2801-2817 [27] 钟元, 郑嘉诚, 邱红岩, 等. 西藏东部阳坡和阴坡主要建群树种径向生长对极端干旱的响应差异. 生态学报, 2024, 44(3): 1221-1230 [28] Elfstrom LM, Powers MD. Effects of thinning on tradeoffs between drought resistance, drought resilience, and wood production in mature Douglas-fir in Western Oregon, USA. Canadian Journal of Forest Research, 2023, 53: 605-619 [29] Finley K, Zhang J. Climate effect on ponderosa pine radial growth varies with tree density and shrub removal. Forests, 2019, 10: 477 [30] Wu X, Liu H, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Nor-thern Hemisphere. Global Change Biology, 2018, 24: 504-516 [31] Manrique-Alba À, Beguería S, Molina AJ, et al. Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Science of the Total Environment, 2020, 728: 138536 [32] Navarro-Cerrillo RM, Sánchez-Salguero R, Rodriguez C, et al. Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. sylvestris stands in southern Spain. Forest Eco-logy and Management, 2019, 433: 313-324 [33] 贾磊, 于沛, 许中旗, 等. 塞罕坝地区3个树种径向生长对气象因子的响应. 河北农业大学学报, 2023, 46(4): 74-82 [34] Toillon J, Fichot R, Dallé E, et al. Planting density affects growth and water-use efficiency depending on site in Populus deltoids × P. nigra. Forest Ecology and Management, 2013, 304: 345-354 [35] Wang H, Wan P, Wang Q, et al. Prevalence of inter-tree competition and its role in shaping the community structure of a natural Mongolian Scots pine (Pinus sylvestris var. mongolica) forest. Forests, 2017, 8: 84 [36] Gea-Izquierdo G, Martín-Benito D, Cherubini P, et al. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Annals of Forest Science, 2009, 66: 802 [37] 马士友. 北京地区侧柏人工林径向生长对采伐、气候因子的响应研究. 硕士论文. 北京: 北京林业大学, 2016 [38] Kwon S, 潘磊磊, 时忠杰, 等. 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应. 生态学杂志, 2019, 38(7): 1962-1972 |