[1] Adojoh OC, Marret F, Duller R, et al. Stages of palaeoenvironmental evolution, climate and sea level change of the Niger Delta, east Equatorial Atlantic: Novelty from elemental tracers, sedimentary facies and pollen records. The Holocene, 2023, 33: 781-790 [2] 王开发, 王宪曾. 孢粉学概论. 北京: 北京大学出版社, 1983 [3] Senn C, Tinner W, Felde VA, et al. Modern pollen-vegetation-plant diversity relationships across large environmental gradients in northern Greece. The Holocene, 2022, 32: 159-173 [4] Boutahar A, Gonzalez PC, Picone RM, et al. Modern pollen-vegetation relationship in the Rif mountains (Northern Morocco). Review of Palaeobotany and Palynology, 2023, 310: 104828 [5] Lee J, Jun CP, Yi S, et al. Modern pollen-climate relationships and their application for pollen-based quantitative climate reconstruction of the mid-Holocene on the southern Korean Peninsula. The Holocene, 2022, 32: 127-136 [6] Cui QY, Zhao Y, Qin F, et al. Characteristics of the modern pollen assemblages from different vegetation zones in Northeast China: Implications for pollen-based climate reconstruction. Science China Earth Sciences, 2019, 62: 1564-1577 [7] Han DX, Gao CY, Li YH, et al. Potential in paleoclimate reconstruction of modern pollen assemblages from natural and human-induced vegetation along the Heilongjiang River basin, NE China. Science of the Total Environment, 2020, 745: 141121 [8] Guo C, Ma YZ, Li DD, et al. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547: 109699 [9] Zhao YJ, Li YC, Zhang Z, et al. Relationship between modern pollen assemblages and vegetation in the Bashang typical steppe region of North China. Ecological Indicators, 2022, 135: 108581 [10] Huang XZ, Chen XM, Du X. Modern pollen assemblages from human-influenced vegetation in northwestern China and their relationship with vegetation and climate. Vegetation History and Archaeobotany, 2018, 27: 767-780 [11] Zhang WS, An CB, Li YC, et al. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China. Journal of Arid Land, 2023, 15: 327-343 [12] Ma LY, Li ZG, Xu QH, et al. Modern pollen assemblages from the hinterland of the Tibetan Plateau and their significance for reconstructions of past vegetation. Boreas, 2023, 53: 42-55 [13] Cao CQ, Wang NN, Li WJ, et al. Modern pollen thresholds for tree presence on the eastern Tibetan Plateau and their potential application. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 639: 112066 [14] Fang YM, Bunting MJ, Ma CM, et al. Are modern pollen assemblages from soils and mosses the same? A comparison of natural pollen traps from subtropical China. Catena, 2022, 209: 105790 [15] Su MJ, Wang NN, Dong HR, et al. Influence of human impacts on modern pollen assemblages and an assessment of their reliability in reconstructing climate in eastern China. Quaternary International, 2023, 670: 45-54 [16] 龙香月, 黄康有, 陈聪, 等. 华南亚热带武夷山地区垂直植被带表土孢粉散布规律. 热带地理, 2023, 43(6): 1005-1020 [17] 李永飞, 夏中林, 沈华东, 等. 峨眉山世界遗产地表土孢粉组合及其生态和古环境启示. 生态学报, 2020, 40(1): 181-201. [18] Chi CT, Xiao XY, Jia BY. Modern vegetation-climate relationships for pollen assemblages across the mountainous regions of southwestern China: Implications for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 644: 112211 [19] Zhang WC, Li CH, Lu HY, et al. Relationship between surface pollen assemblages and vegetation in Luonan Basin, Eastern Qinling Mountains, Central China. Journal of Geographical Sciences, 2014, 24: 427-445 [20] Fang YM, Ma CM, Mao LM, et al. Surface pollen spectra from Shennongjia Mountains, central China: An interpretation aid to Quaternary pollen deposits. Review of Palaeobotany and Palynology, 2014, 214: 40-50 [21] 倪健, 陈瑜, Herzschuh U, 等. 中国第四纪晚期孢粉记录整理. 植物生态学报, 2010, 34(8): 1000-1005 [22] Yao SC, Li CH, Chen YS, et al. Moisture conditions during the Younger Dryas and 4.2 ka event as revealed from a subalpine peat record in the Luoxiao Mountains, southern China. Review of Palaeobotany and Palynology, 2022, 305: 104747 [23] 张国珍, 杨道德. 湖南壶瓶山国家级自然保护区科学考察报告集. 长沙: 湖南科学技术出版社, 2004 [24] 张国珍, 张代贵. 湖南壶瓶山植物志. 长沙: 湖南科学技术出版社, 2008 [25] 张玉荣, 张国珍, 钟武洪, 等. 壶瓶山国家级自然保护区森林植物群落类型及特征. 湖南林业科技, 2005, 32(1): 14-18 [26] Faegri K, Kaland PE, Krzywinski K. A Textbook of Pollen Analysis. Chichester, UK: John Wiley & Sons, 1989 [27] 中国科学院植物研究所, 华南植物研究所. 中国热带亚热带被子植物花粉形态. 北京: 科学出版社, 1982 [28] 王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态. 北京: 科学出版社, 1995 [29] 唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴. 北京: 科学出版社, 2017 [30] 舒军武, 黄小忠, 徐德克, 等. 新版Tilia软件: 中文指南和使用技巧. 古生物学报, 2018, 57(2): 260-272 [31] 刘会平, 谢玲娣. 神农架南坡常见花粉的R值研究. 华中师范大学学报: 自然科学版, 1998, 32(4): 495-497 [32] 李文漪. 中国北、中亚热带晚第四纪植被与环境研究. 北京: 海洋出版社, 1993 [33] 姚祖驹, 李文漪. 广西苗儿山现代花粉雨研究//李文漪, 姚祖驹, 等. 中国北、中亚热带晚第四纪植被与环境研究. 北京: 海洋出版社, 1993 [34] Liu HY, Xing QR, Jia ZK, et al. An outline of Quaternary development of Fagus forest in China: Palynological and ecological perspectives. Flora-Morphology, Distribution, Functional Ecology of Plants, 2003, 198: 249-259 [35] 郑卓, 黄康有, 许清海, 等. 中国表土花粉与建群植物地理分布的气候指示性对比. 中国科学D辑, 2008, 38(6): 701-714 [36] 舒军武. 日本本州北部白神山地圆齿水青冈林(Fagus crenata)表土花粉分析及水青冈属花粉的代表性. 微体古生物学报, 2012, 29(3): 213-225 [37] 刘会平, 唐晓春, 王开发, 等. 神农架北坡表土常见花粉的R值研究. 地理科学, 2001, 21(4): 378-380 [38] 李旭, 刘金陵. 四川西昌螺髻山全新世植被与环境变化. 地理学报, 1988, 43(1): 44-51 [39] 许清海, 王子惠, 徐全洪, 等. 长白山岳桦林带泥炭沼泽孢粉分析及其意义. 地理科学, 1994, 14(2): 186-192 |