[1] 王兴, 钟泽坤, 王佳懿, 等. 黄土高原撂荒草地土壤碳库对两年增温增雨的响应. 土壤学报, 2023, 60(2): 523-534 [2] 张金硕, 李素艳, 孙向阳, 等. 山东省不同植被类型土壤有机碳及其组分分布特征. 土壤, 2024, 56(2): 350-357 [3] 贺凌云, 陈伏生, 郑志宇, 等. 氮磷添加对常绿阔叶林土壤团聚体有机碳及其与磷组分相关的影响. 水土保持学报, 2024, 38(2): 377-386 [4] 李娅丽, 何国兴, 柳小妮, 等. 陇中黄土高原温性荒漠不同草地型土壤团聚体稳定性及有机碳分布特征. 环境科学, 2024, 45(9): 5431-5440 [5] 黄圣杰, 陈俊朴, 陈涛, 等. 不同覆盖模式对樱桃园土壤团聚体及碳氮的影响. 水土保持研究, 2022, 29(1): 44-50 [6] 黄国华, 宁心怡, 卢玉鹏, 等. 基于果园生草模式的固碳潜力及影响研究进展. 北方园艺, 2023(14): 146-153 [7] Gaudaré U, Kuhnert M, Smith P, et al. Soil organic carbon stocks potentially at risk of decline with organic farming expansion. Nature Climate Change, 2023, 13: 719-725 [8] 姜莉莉, 宫庆涛, 武海斌, 等. 不同生草处理对苹果园土壤微生物群落的影响. 应用生态学报, 2019, 30(10): 3482-3490 [9] 陈曦, 王改玲, 刘焕焕, 等. 生草覆盖对枣园土壤水稳性团聚体中两种有机碳组成的影响. 应用与环境生物学报, 2021, 27(2): 424-431 [10] 鲁泽让, 陈佳钰, 李智贤, 等. 冬绿肥覆盖对土壤团聚体及有机碳和AMF多样性的影响. 环境科学, 2024, 45(4): 2363-2372 [11] 冯浩亮, 韩晓增, 陆欣春, 等. 有机培肥影响土壤团聚体形成与稳定的研究进展. 土壤与作物, 2023, 12(4): 393-400 [12] 张嫒, 郑朝霞, 赵志远, 等. 有机无机肥长期配施对果园土壤碳库及温室气体排放的影响. 环境科学, 2023, 44(10): 5823-5831 [13] Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 [14] Cambardella CA, Elliott ET. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56: 777-783 [15] 杨静, 郭文圻, 杨文浩, 等. 配施紫云英对不同类型水稻土溶解性有机碳氮淋溶及损失的影响. 农业环境科学学报, 2024, 43(2): 351-359 [16] 宋红梅, 高玉, 员明鑫, 等. 长期施肥对旱塬麦田土壤大团聚体有机碳组分及冬小麦产量的影响. 环境科学, 2024, 45(7): 4187-4195 [17] Rugare JT, Pieterse PJ, Mabasa S. Allelopathic potential of green manure cover crops on germination and early seedling development of goose grass[Eleusine indica (L.) Gaertn] and blackjack (Bidens pilosa L.). International Journal of Agronomy, 2021, 2021: 6552928 [18] 韩贞贵, 毛天旭, 屠丹, 等. 长江源区草地覆盖变化对土壤团聚体分布及稳定性的影响. 草地学报, 2020, 28(3): 801-807 [19] Seguel O, Díaz D, Acevedo E, et al. Hydraulic conductivity in a soil cultivated with wheat-rapeseed rotation under two tillage systems. Journal of Soil Science and Plant Nutrition, 2020, 20: 2304-2315 [20] 葛茂泉, 王纯, 许宏达, 等. 福鼎茶园土壤团聚体有机碳分布与分子结构特征. 水土保持学报, 2023, 37(6): 201-208 [21] 杨凯, 李延锋, 张西兴, 等. 化肥与不同有机物料配施对土壤有机碳组分及土壤水稳性团聚体的影响. 土壤通报, 2024, 55(3): 707-715 [22] 李超, 王俊, 温萌萌, 等. 绿肥填闲种植对旱作冬小麦农田土壤团聚体有机碳含量的影响. 干旱地区农业研究, 2023, 41(3): 210-217 [23] 刘雪强, 南丽丽, 郭全恩, 等. 黄土高原半干旱区种植不同绿肥作物对土壤理化性质的影响. 甘肃农业大学学报, 2020, 55(1): 145-152 [24] Liu XJ, Zhang Y, Zhang L, et al. Aggregate-associated soil organic carbon fractions in subtropical soil undergoing vegetative restoration. Land Degradation & Development, 2023, 34: 4296-4306 [25] 王耀锋, 邵玲玲, 刘玉学, 等. 桃园生草对土壤有机碳及活性碳库组分的影响. 生态学报, 2014, 34(20): 6002-6010 [26] Garbowski T, Bar-Michalczyk D, Charazińska S, et al. An overview of natural soil amendments in agriculture. Soil and Tillage Research, 2023, 225: 105462 [27] 吕晓菡, 章明奎, 严建立. 绿肥配施有机肥改良新建红壤橘园的效果研究. 土壤通报, 2020, 51(1): 164-170 [28] 刘艳, 唐亚福, 杨越超, 等. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响. 应用生态学报, 2022, 33(4): 1021-1026 [29] Qiao Y, Miao S, Li N, et al. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a Mollisol as estimated from natural 13C abundance. Plant and Soil, 2015, 392: 163-174 [30] 李宇航, 谷思玉, 何婉莹, 等. 保护性耕作对黑土有机碳组分和玉米产量的影响. 土壤通报, 2023, 54(2): 336-345 [31] Kristiina K, Emmi H, Marko J, et al. Similar temperature sensitivity of soil mineral-associated organic carbon regardless of age. Soil Biology and Biochemistry, 2019, 136: 107527 [32] Sarker JR, Singh BP, Cowie AL, et al. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil and Tillage Research, 2018, 178: 209-223 [33] 杨阳, 王宝荣, 窦艳星, 等. 植物源和微生物源土壤有机碳转化与稳定研究进展. 应用生态学报, 2024, 35(1): 111-123 [34] Li S, Sheng MY, Yuan FY, et al. Effect of land cover change on total SOC and soil PhytOC accumulation in the karst subtropical forest ecosystem, SW China. Journal of Soils and Sediments, 2021, 21: 2566-2577 [35] 刘瑞, 张宇亭, 王志超, 等. 绿肥覆盖对紫色土坡耕地柑橘园氮磷流失的阻控效应研究. 水土保持学报, 2021, 35(2): 68-74 |