[1] 乔方, 车丽雯, 辛月, 等. 草莓食叶害虫褐痣拟栉叶蜂生物学特性初步观察. 植物保护, 2022, 48(2): 183-187, 200 [2] Wang JJ, Li RC, Zhang H, et al. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 2020, 20: 38 [3] Yang BY, Zheng MZ, Dong WP, et al. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment. Microbiology Spectrum, 2023, 11: e03611-22 [4] Zhang H, Bai X, Han YJ, et al. Stress-resistance and growth-promoting characteristics and effects on vegetable seed germination of Streptomyces sp. strains isolated from wetland plant rhizospheres. Current Microbiology, 2023, 80: 190 [5] Kanini GS, Katsifas EA, Savvides AL, et al. Streptomyces rochei ACTA1551, an indigenous Greek isolate stu-died as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. BioMed Research Inter-national, 2013, 2013: 387230 [6] Wei M, Jiao MF, Nie XB, et al. Genomic and metabolomic profiling reveal Streptomyces rochei S32 contributes to plant growth by nitrogen fixation and production of bioactive substances. Plant and Soil, 2024, 501: 343-360 [7] Zhang QM, Yong DJ, Zhang Y, et al. Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biology and Technology, 2016, 115: 30-37 [8] Moulin C, Pruneau L, Vaillant V, et al. Impacts of agroecological practices on soil microbial communities in experimental open-field vegetable cropping systems. FEMS Microbiology Ecology, 2023, 99: fiad030 [9] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-114 [10] 关松萌. 化学农药对土壤脲酶活性抑制作用的研究. 土壤通报, 1992, 23(5): 232-233 [11] 张治安, 张美善, 蔚荣海, 等. 植物生理学实验. 北京: 中国农业科学出版社, 2003: 132-134 [12] 王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006 [13] Cao SM, Yang F, Zhang HH, et al. Physiological and transcriptome profiling analyses reveal important roles of Streptomyces rochei D74 in improving drought tolerance of Puccinellia distans (Jacq.) Parl. Environmental and Experimental Botany, 2023, 207: 105204 [14] He F, Zhang ZL, Cui M, et al. Disease prevention and growth promotion effects of actinomycete strain D74 on Amorphophallus konjac. Acta Horticulturae Sinica, 2015, 42: 367-376 [15] 徐亮, 王月福, 程曦, 等. 施磷对花生根系生长发育和产量的影响. 花生学报, 2009, 38(1): 32-35 [16] Mattner SW, Milinkovic M, Arioli T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. Journal of Applied Phycology, 2018, 30: 2943-2951 [17] Bibi S, Khan S, Rehman A, et al. The effect of potas-sium on growth and yield of strawberry (Fragaria ananassa (Duchesne ex Weston) Duchesne ex Rozier). Pakistan Journal of Botany, 2016, 48: 1407-1413 [18] Hu D, Li SH, Li Y, et al. Streptomyces sp. strain TOR3209: A rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Scientific Reports, 2020, 10: 20132 [19] Guo Q, Shi MD, Chen L, et al. The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation. Soil Biology and Biochemistry, 2020, 144: 107755 [20] 孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制. 应用生态学报, 2021, 32(1): 299-308 [21] Yu C, Lv J, Xu HY. Plant growth-promoting fungi and rhizobacteria control Fusarium damping-off in Mason pine seedlings by impacting rhizosphere microbes and altering plant physiological pathways. Plant and Soil, 2024, 499: 503-519 [22] Krishnan R, Menon RR, Likhitha, et al. Novosphingo-bium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Research in Microbiology, 2017, 168: 113-121 [23] Guo JM, Chen YY, Lu PZ, et al. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. Environmental Pollution, 2021, 287: 117641 [24] 王桂君. 生物炭和有机肥对松嫩平原沙化土壤的改良效应及其机制研究. 博士论文. 长春: 东北师范大学, 2018 [25] 冯超红, 李丽娟, 张姣姣, 等. 球毛壳菌促生防病机制及应用研究进展. 中国生物防治学报, 2023, 39(4): 961-969 [26] Quyet NT, Cuong HV, Hong LTA, et al. Control mecha-nism of Chaetomium spp. and its biological control of Citrus root rot in pot and field experiments in Vietnam. Journal of Agricultural Technology, 2016, 12: 593-600 [27] Feng CH, Xu F, Li LJ, et al. Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorga-nisms. Frontiers in Microbiology, 2023, 14: 1133025 [28] Nakayama M, Tateno R. Solar radiation strongly influences the quantity of forest tree root exudates. Trees, 2018, 32: 871-879 [29] Wen T, Zhao ML, Yuan J, et al. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecology Letters, 2021, 3: 42-51 [30] Staszel-Szlachta K, Lasota J, Szlachta A, et al. The impact of root systems and their exudates in different tree species on soil properties and microorganisms in a temperate forest ecosystem. BMC Plant Biology, 2024, 24: 45 [31] Yao ZT, Khan A, Xu YZ, et al. Profiling of rhizosphere bacterial community associated with sugarcane and banana rotation system. Chemical and Biological Technologies in Agriculture, 2024, 11: 91 [32] Richardson AE, Barea JM, Mcneill AM, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321: 305-339 [33] Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109: 7-13 [34] 郭龙, 冯童禹, 薛壮壮, 等. 氮形态和磷肥对红壤玉米根际解磷微生物群落和磷酸酶活性的影响. 土壤学报, 2023, 60(5): 1493-1506 [35] Song B, Xue Y, Yu ZH, et al. Toxic metal contamination effects mediated by hotspot intensity of soil enzymes and microbial community structure. Journal of Hazardous Materials, 2024, 466: 133556 [36] 刘艳娇, 樊丹丹, 李香真, 等. 人工与天然云杉林土壤真菌群落多样性及菌群网络关系特征. 应用生态学报, 2021, 32(4): 1441-1451 |