[1] Pellegrini AF, Ahlström A, Hobbie SE, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553: 194-198 [2] Grau-Andrés R, Davies MG, Waldron S, et al. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems. Journal of Environmental Management, 2019, 231: 1004-1011 [3] Xu YH, Su J, Li Q, et al. Effects of a surface wildfire on soil nutrient and microbial functional diversity in a shrubbery. Acta Ecologica Sinica, 2012, 32: 258-264 [4] Yang MM, Luo X, Cai Y, et al. Effect of fire and post-fire management on soil microbial communities in a lo-wer subtropical forest ecosystem after a mountain fire. Journal of Environmental Management, 2024, 351: 119885 [5] 石炳东, 韩董董, 李兆国, 等. 兴安落叶松林火烧迹地土壤微生物量碳氮特征. 东北林业大学学报, 2022, 50(12): 78-82, 98 [6] Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 2007, 85: 91-118 [7] 田荣, 陈奇伯, 黎建强, 等. 计划烧除对云南松林土壤微生物及酶活性的影响. 生态环境学报, 2020, 29(4): 695-701 [8] 李炳怡, 刘冠宏, 顾泽, 等. 火干扰对油松林土壤细菌群落的影响. 生态学杂志, 2023, 42(6): 1355-1364 [9] Čugunovs M, Tuittila ES, Sara-Aho I, et al. Recovery of boreal forest soil and tree stand characteristics a century after intensive slash-and-burn cultivation. Silva Fennica, 2017, 51: 7723 [10] 梁东哲, 赵雨森, 辛颖. 大兴安岭重度火烧迹地天然次生林土壤温室气体通量及其影响因子. 应用生态学报, 2019, 30(3): 777-784 [11] 周文昌, 牟长城, 刘夏, 等. 火干扰对小兴安岭白桦沼泽和落叶松-苔草沼泽凋落物和土壤碳储量的影响. 生态学报, 2012, 32(20): 6387-6395 [12] 张宇婧, 吴志伟, 顾先丽, 等. 火烧强度和火后恢复时间对大兴安岭森林土壤有机碳含量的影响. 应用生态学报, 2018, 29(8): 2455-2462 [13] 张韫. 土壤·水·植物理化分析教程. 北京: 中国林业出版社, 2011: 6-47 [14] Zhao XQ, Huang J, Lu J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicology and Environmental Safety, 2019, 170: 218-226 [15] Jacomy M, Venturini T, Heymann S, et al. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One, 2017, 9: e98679 [16] 吴雨茹, 许银, 钟欣艺, 等. 短期围栏封育对夹金山草甸群落植物多样性和根系特征的影响[EB/OL]. (2025-01-26) [2025-02-13]. 应用与环境生物学报. https://doi.org/10.19675/j.cnki.1006-687x.2024.04014 [17] 章玉鲜. 计算分析生活垃圾填埋场对周围土壤微生物的影响. 硕士论文. 贵阳: 贵州师范大学, 2022 [18] 王鼎, 周梅, 赵鹏武, 等. 林火干扰对兴安落叶松林土壤化学性质的影响. 东北林业大学学报, 2018, 46(5): 33-37 [19] Zavala LM, Silvia CDR, López AJ. How wildfires affect soil properties? A brief review. Geographical Research Letters, 2014, 40: 311-331 [20] Aerts R, Chapin III FS. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns// Fitter AH, Raffaelli DG, eds. Advances in Ecological Research. San Diego, CA, USA: Academic Press, 1999: 1-67 [21] 耿玉清, 周荣伍, 李涛, 等. 北京西山地区林火对土壤性质的影响. 中国水土保持科学, 2007(5): 66-70 [22] 张亚, 张文静, 杨礼通, 等. 火烧迹地不同植被恢复下土壤团聚体酶活性特征. 四川农业大学学报, 2021, 39(1): 79-85 [23] 王丽红, 辛颖, 赵雨森, 等. 大兴安岭火烧迹地植被恢复中土壤微生物量及酶活性. 水土保持学报, 2015, 29(3): 184-189 [24] 张仲富, 王禹童, 艾静, 等. 钾肥对甘蔗根际微生物多样性和群落构建过程的影响. 应用生态学报, 2024, 36(2): 526-536 [25] 葛晓改, 肖文发, 曾立雄, 等. 三峡库区不同林龄马尾松土壤养分与酶活性的关系. 应用生态学报, 2012, 23(2): 445-451 [26] Sun JH, Yang L, Wei J, et al. The responses of soil bacterial communities and enzyme activities to the edaphic properties of coal mining areas in Central China. PLoS One, 2020, 15: e0231198 [27] Venkatachalam S, Kannan VM, Saritha VN, et al. Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. Ecological Indicators, 2021, 126: 107704 [28] Gholz HL, Wedin DA, Smitherman SM, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: Towards a global model of decomposition. Global Change Biology, 2000, 6: 751-765 [29] Stone BW, Li J, Koch BJ, et al. Nutrients cause conso-lidation of soil carbon flux to small proportion of bacte-rial community. Nature Communications, 2021, 12: 3381 [30] 杨寅, 邱钰明, 王中斌, 等. 重度火烧迹地兴安落叶松(Larix gmelinii)根际土壤真菌群落研究. 生态学报, 2021, 41(23): 9399-9409 [31] 王子擎, 张颖, 王扬, 等. 科尔沁沙地植被重建对土壤固氮和固碳菌群的影响. 应用生态学报, 2024, 35(1): 31-40 [32] Rousk J, Brookes CP, Bååth E. Investigating the mecha-nisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 2010, 42: 926-934 [33] Nelson AR, Narrowe AB, Rhoades CC, et al. Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology, 2022, 7: 1419-1430 [34] Hu XJ, Liu JJ, Wei D, et al. Long-term application of nitrogen, not phosphate or potassium, significantly alters the diazotrophic community compositions and structures in a Mollisol in northeast China. Research in Microbiology, 2019, 170: 147-155 [35] Banerjee SK, Kirkby CA, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 2016, 97: 188-198 [36] Rousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 2009, 75: 1589-1596 [37] 劳承英, 申章佑, 李艳英, 等. 基于高通量测序技术分析不同耕作方式下水稻根际土壤真菌多样性. 热带作物学报, 2021, 42(9): 2717-2726 [38] Cameron W, Klaus S, Samiran B, et al. Fungal-bacte-rial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10: 4841 [39] Guo B, Zhang L, Sun HJ, et al. Microbial co-occurrence network topological properties link with reactor parameters and reveal importance of low-abundance genera. NPJ Biofilms and Microbiomes, 2022, 8: 3 [40] Luo F, Zhong JX, Yang YF, et al. Application of random matrix theory to biological networks. Physics Letters A, 2005, 357: 420-423 |