[1] Masson-Delmotte V, Zhai P, Pirani A, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2021 [2] Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2007 [3] Hoover K, Riddle AA. Forest Carbon Primer. Washington, DC, USA: Congressional Research Service, 2020 [4] Carlsbecker A, Augstein F. Xylem versus phloem in se-condary growth: A balancing act mediated by gibbere-llins. Journal of Experimental Botany, 2021, 72: 3489-3492 [5] Pugh TA, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 4382-4387 [6] Dietrich L, Delzon S, Hoch G, et al. No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015 drought. Journal of Ecology, 2019, 107: 334-349 [7] Zweifel R, Sterck F, Braun S, et al. Why trees grow at night.New Phytologist, 2021, 231: 2174-2185 [8] Etzold S, Sterck F, Bose AK, et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecology Letters, 2022, 25: 427-439 [9] Deslauriers A, Anfodillo T, Rossi S, et al. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiology, 2007, 27: 1125-1136 [10] Drew DM, Downes GM. The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia, 2009, 27: 159-172 [11] Herzog KM, Häsler R, Thum R. Diurnal changes in the radius of a subalpine Norway spruce stem: Their relation to the sap flow and their use to estimate transpiration. Trees, 1995, 10: 94-101 [12] Zweifel R, Haeni M, Buchmann N, et al. Are trees able to grow in periods of stem shrinkage? New Phytologist, 2016, 211: 839-849 [13] Chan T, Hölttä T, Berninger F, et al. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell & Environment, 2016, 39: 233-244 [14] 白孟鑫, 张学珍, 邢佩, 等. 中世纪气候异常期和小冰期中国华北与北美西南部年代际干湿变化的关系. 第四纪研究, 2023, 43(4): 1101-1112 [15] Fan ZX, Bräuning A, Cao KF, et al. Growth-climate responses of high-elevation conifers in the central Heng-duan Mountains, southwestern China. Forest Ecology and Management, 2009, 258: 306-313 [16] 张贇, 尹定财, 田昆, 等. 滇西北海拔上限大果红杉径向生长对气候变化的响应. 应用生态学报, 2017, 28(9): 2805-2812 [17] 王荷, 周军, 覃鑫浩, 等. 哈巴雪山高山松径向生长对气候变化的响应. 林业资源管理, 2019(2): 67-72, 158 [18] 余佳霖, 张卫国, 田昆, 等. 普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应. 北京林业大学学报, 2017, 39(1): 43-51 [19] 尹定财, 孙梅, 张卫国, 等. 气候变暖对香格里拉油麦吊云杉径向生长的影响. 东北林业大学学报, 2019, 47(3): 1-7 [20] 彭新华, 杨绕琼, 尹云丽, 等. 滇西北白马雪山高山松(Pinus densata)径向生长对气候因子的响应. 生态学报, 2023, 43(21): 8884-8893 [21] 张贇, 尹定财, 田昆, 等. 玉龙雪山东坡不同海拔长苞冷杉径向生长与气候因子的关系. 应用生态学报, 2018, 29(7): 2355-2361 [22] 张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3548-3556 [23] 吴祥定. 树木年轮与气候变化. 北京: 气象出版社, 1990: 161-234 [24] Fang OY, Zhang QB. Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 2019, 25: 245-253 [25] Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 2010, 23: 1696-1718 [26] Raven J. The quantitative role of ‘dark'respiratory processes in heterotrophic and photolithotrophic plant growth. Annals of Botany, 1976, 40: 587-602 [27] Andrianantenaina AN, Rathgeber CBK, Pérez-de-Lis G, et al. Quantifying intra-annual dynamics of carbon sequestration in the forming wood: A novel histologic approach. Annals of Forest Science, 2019, 76: 62 [28] Steppe K, Sterck F, Deslauriers A. Diel growth dyna-mics in tree stems: Linking anatomy and ecophysiology. Trends in Plant Science, 2015, 20: 335-343 [29] Cosgrove D. Biophysical control of plant cell growth. Annual Review of Plant Physiology, 1986, 37: 377-405 [30] Abe H, Nakai T, Utsumi Y, et al. Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiology, 2003, 23: 859-863 [31] Novick KA, Ficklin DL, Stoy PC, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6: 1023-1027 [32] Carminati A, Javaux M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends in Plant Science, 2020, 25: 868-880 [33] Woodruff DR, Meinzer FC. Size-dependent changes in biophysical control of tree growth: The role of turgor. Tree Physiology, 2011, 4: 363-384 [34] Cabon A, Fernández-de-Uña L, Gea-Izquierdo G, et al. Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytologist, 2020, 225: 209-221 [35] Hinckley TM, Bruckerhoff DN. The effects of drought on water relations and stem shrinkage of Quercus alba. Canadian Journal of Botany, 1975, 53: 62-72 [36] Zweifel R, Zimmermann L, Newbery DM. Modeling tree water deficit from microclimate: An approach to quanti-fying drought stress. Tree Physiology, 2005, 25: 147-156 [37] Steppe K, de Pauw DJ, Lemeur R, et al. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physi-ology, 2006, 26: 257-273 [38] Peters RL, Kaewmano A, Fu PL, et al. High vapour pressure deficit enhances turgor limitation of stem growth in an Asian tropical rainforest tree. Plant, Cell & Environment, 2023, 46: 2747-2762 [39] Grossiord C, Buckley TN, Cernusak LA, et al. Plant responses to rising vapor pressure deficit. New Phytologist, 2020, 226: 1550-1566 [40] Fu Z, Ciais P, Prentice IC, et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nature Communications, 2022, 13: 989 [41] Liu XF, Feng XM, Fu BJ. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 2020, 698: 134165 [42] 高露双, 王晓明, 赵秀海. 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应. 植物生态学报, 2011, 35(1): 27-34 [43] 王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 2010, 21(12): 3255-3265 [44] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345 [45] Gharun M, Hörtnagl L, Paul-Limoges E, et al. Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. Philosophical Transactions of the Royal Society B, 2020, 375: 20190521 [46] Zhou S, Zhang Y, Williams AP, et al. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Science Advances, 2019, 5: eaau5740 |