[1] IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: Cambridge University Press, 2023 [2] 周波涛, 钱进. IPCC AR6 报告解读: 极端天气气候事件变化. 气候变化研究进展, 2021, 17(6): 713-718 [3] Rockström J, Steffen W, Noone K, et al. A safe opera-ting space for humanity. Nature, 2009, 461: 472-475 [4] 孙凤华, 杨素英, 陈鹏狮. 东北地区近44年的气候暖干化趋势分析及可能影响. 生态学杂志, 2005, 24(7): 751-755 [5] 敖雪, 翟晴飞, 崔妍, 等. 不同升温情景下中国东北地区平均气候和极端气候事件变化预估. 气象与环境学报, 2020, 36(5): 40-51 [6] McDonald AJS, Davies WJ. Keeping in touch: Responses of the whole plant to deficits. Advances in Botanical Research, 1996, 22: 229-300 [7] Xiao Y, Xiao Q, Sun X. Ecological risks arising from the impact of large-scale afforestation on the regional water supply balance in southwest China. Scientific Reports, 2020, 10: 4150 [8] 周婷, 曾广宏, 刘碧颖, 等. 海滨乔木矮化现象及其环境因子驱动力. 生态学报, 2024, 44(3): 893-902 [9] 吴佳芯, 曾冉琦, 尹会兰, 等. 植物对水分胁迫的响应机制. 现代农业研究, 2024, 30(10): 64-68 [10] Powell AS, Jackson L, Ardón M. Disentangling the effects of drought, salinity, and sulfate on baldcypress growth in a coastal plain restored wetland. Restoration Ecology, 2016, 24: 548-557 [11] Lourenço Jr J, Newman EA, Ventura JA, et al. Soil-associated drivers of plant traits and functional composition in Atlantic forest coastal tree communities. Ecosphere, 2021, 12: e03629 [12] Gryc V, Hacura J, Vavrcík H, et al. Monitoring of xylem formation in Picea abies under drought stress influence. Dendrobiology, 2012, 67: 15-24 [13] Martin-Benito D, Anchukaitis KJ, Evans MN, et al. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species. Forests, 2017, 8: 332 [14] Swidrak I, Gruber A, Oberhuber W. Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees, 2014, 28: 1161-1171 [15] 张琦, 苑丹阳, 王晓春. 大小龄红松木质部解剖特征的年龄效应及其对气候变化的响应差异. 生态学报, 2024, 44(11): 4876-4888 [16] 孙昊慷, 韩佳轩, 贾建恒, 等. 不同林龄及径级樟子松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(11): 2942-2950 [17] 李佳音, 郭明钢, 隋丹丹, 等. 广西南部马尾松木质部年内生长动态及对气候响应规律. 第四纪研究, 2024, 44(4): 996-1007 [18] 金敏艳, 李进军, 车宗玺, 等. 祁连山中部祁连圆柏年内径向生长对气候因子的响应. 生态学报, 2020, 40(21): 7699-7708 [19] Fonti P, Heller O, Cherubini P, et al. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology, 2013, 15: 210-219 [20] Pérez-de-Lis G, Olano JM, Rozas V, et al. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Functional Ecology, 2017, 31: 592-603 [21] 刘晓燕, 李吉跃. 我国北方树种水力结构特征与木质部栓塞日变化规律研究. 安徽农学通报, 2009, 15(11): 70-75 [22] 徐慧, 薛媛. 银白杨对干旱胁迫的生理响应研究. 林业科学研究, 2024, 37(4): 166-173 [23] Zhang J, Jia W, Yang J, et al. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 2006, 97: 111-119 [24] Zhang Y, Li Y, Hassan MJ, et al. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology, 2020, 20: 150 [25] 杜少波, 毛晓宁, 鄂崇毅, 等. 两种柳属植物在干旱胁迫下的生理响应研究[EB/OL]. (2024-10-30) [2024-11-08]. 内蒙古农业大学学报: 自然科学版, https://link.cnki.net/urlid/15.1209.S.20241029.1904.006 [26] 李天翔, 肖亚琴, 曹基武, 等. 干旱对不同种源花榈木幼苗生长及生理生化的影响. 中南林业科技大学学报, 2024, 44(12): 86-96 [27] 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异. 应用生态学报, 2018, 29(2): 352-360 [28] Meyer BF, Buras A, Rammig A, et al. Higher susceptibility of beech to drought in comparison to oak. Dendrochronologia, 2020, 64: 125780 [29] McCulloh K, Sperry JS, Lachenbruch B, et al. Moving water well: Comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phyto-logist, 2010, 186: 439-450 [30] 何宇静, 高智远, 张露, 等. 巨柏苗木对干旱胁迫的生长响应. 高原农业, 2024, 8(5): 490-495 [31] Corcuera L, Camarero JJ, Gil-Pelegrín E. Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees, 2004, 18: 83-92 [32] Zimmermann J, Link RM, Hauck M, et al. 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species. Trees, 2021, 35: 919-937 [33] Ogasa M, Miki NH, Okamoto M, et al. Water loss regulation to soil drought associated with xylem vulnerability to cavitation in temperate ring-porous and diffuse-porous tree seedlings. Trees, 2014, 28: 461-469 [34] 杜英军, 李士杰, 王丽, 等. 东北地区帽儿山种源实验林区不同种源水曲柳径向生长对气候的响应. 应用生态学报, 2023, 35(5): 1159-1168 [35] Gričar J, Jagodic Š, Šefc B, et al. Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality? European Journal of Forest Research, 2014, 133: 551-562 [36] Hagedorn F, Joseph J, Peter M, et al. Recovery of trees from drought depends on belowground sink control. Nature Plants, 2016, 2: 16111 [37] Liu C, Liu Y, Guo K, et al. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 2011, 71: 174-183 [38] 贾瑞丰, 杨曾奖, 徐大平, 等. 干旱胁迫对降香黄檀幼苗生长及内源激素含量的影响. 生态环境学报, 2013, 22(7): 1136-1140 [39] Aloni R. Ecophysiological implications of vascular differentiation and plant evolution. Trees, 2015, 29: 1-16 [40] 赵霖玉, 李秧秧. 遮阴和干旱对白桦幼苗光诱导的气孔动力学影响. 应用生态学报, 2022, 33(9): 2331-2338 [41] 李书平, 魏建康, 张迎辉, 等. 干旱胁迫对福建山樱花和日本樱花幼苗内源激素的影响. 热带作物学报, 2014, 35(6): 1143-1147 [42] Krishnan S, Merewitz EB. Drought stress and trinexapac-ethyl modify phytohormone content within Kentucky bluegrass leaves. Journal of Plant Growth Regulation, 2015, 34: 1-12 [43] 张世英, 刘易超, 李泳潭, 等. 干旱胁迫对中华金叶榆盆栽苗内源激素的影响. 西部林业科学, 2021, 50(6): 40-45 |