[1] Cerino F, Zingone A. A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. European Journal of Phycology, 2006, 41: 363-378 [2] Li A, Stoecker DK, Coats DW, et al. Ingestion of fluorescently labeled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquatic Microbial Ecology, 1996, 10: 139-147 [3] Seixas P, Coutinho P, Ferreira M, et al. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. Journal of Experimental Marine Biology and Ecology, 2009, 381: 1-9 [4] Khanaychenko A, Mukhanov V, Aganesova L, et al. Grazing and feeding selectivity of Oithona davisae in the Black Sea: importance of cryptophytes. Turkish Journal of Fisheries and Aquatic Sciences, 2018, 18: 937-949 [5] Nishitani G, Yamaguchi M, Ishikawa A, et al. Relationships between occurrences of toxic Dinophysis species (Dinophyceae) and small phytoplanktons in Japanese coastal waters. Harmful Algae, 2005, 4: 755-762 [6] Skovgaard A. Role of chloroplast retention in a marine dinoflagellate. Aquatic Microbial Ecology, 1998, 15: 293-301 [7] Larsen J. An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia, 1988, 27: 366-377 [8] 朱超, 孙逊, 杨晓冉, 等. 巢湖浮游植物群落季节动态变化特征及其影响因素. 中国环境监测, 2024, 40(4): 129-142 [9] Fiala M, Semeneh M, Oriol L. Size-fractionated phytoplankton biomass and species composition in the Indian sector of the Southern Ocean during austral summer. Journal of Marine Systems, 1998, 17: 179-194 [10] Higashi Y, Seki H. Ecological adaptation and acclimatization of natural freshwater phytoplankters with a nutrient gradient. Environmental Pollution, 2000, 109: 311-320 [11] 李欣, 徐松立, 肖武鹏, 等. 厦门筼筜湖潟湖底栖微藻光合色素的时空变化特征及与环境因子的关系. 应用海洋学学报, 2013, 32(1): 79-87 [12] Tian YQ, Huang BQ, Yu CC, et al. Dynamics of phytoplankton communities in the Jiangdong Reservoir of Jiulong River, Fujian, South China. Chinese Journal of Oceanology and Limnology, 2014, 32: 255-265 [13] Barone R, Naselli-Flores L. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia, 2003, 502: 325-329 [14] Chakraborty S, Lohrenz SE. Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico. Marine Ecology Progress Series, 2015, 521: 31-47 [15] 郑耀洋, 江涛, 吕淑果, 等. 冬季海南岛五个海湾浮游植物光合色素分布的比较研究. 海洋科学, 2016, 40(8): 1-9 [16] Ludwig M, Gibbs SP. DNA is present in the nucleomorph of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma, 1985, 127: 9-20 [17] 刘莲, 任敏, 华敏敏, 等. 象山港西部海域夏季浮游植物生态学研究. Ⅰ. 种类组成及年际变化. 海洋科学, 2013, 37(5): 94-99 [18] 刘懂, 陈晨, 王莉, 等. 象山港海洋牧场示范区浮游植物的群落特征及其与环境因子的关系. 海洋与湖沼, 2016, 47(5): 1024-1032 [19] 杨世民, 刘任茜, 陈文卿. 2018年胶州湾浮游植物群落结构. 中国海洋大学学报: 自然科学版, 2020, 50(9): 72-80 [20] 李立群, 王艳, 王彪, 等. 2009—2021年夏季长江口海域浮游生物群落结构时空分布特征及其影响因素研究. 环境科学研究, 2024, 37(2): 233-245 [21] 王英哲, 胡海燕, 朱琳, 等. 富营养化对靖海湾浮游植物群落的影响. 环境化学, 2024, 43(3): 1010-1024 [22] Adolf JE, Yeager CL, Miller WD, et al. Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA. Estuarine, Coastal and Shelf Science, 2006, 67: 108-122 [23] Wang L, Huang BQ, Liu X, et al. The modification and optimizing of the CHEMTAX running in the South China Sea. Acta Oceanologica Sinica, 2015, 34: 124-131 [24] Liu X, Xiao WP, Landry MR, et al. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems, 2016, 19: 832-849 [25] Zhong YP, Liu X, Xiao WP, et al. Phytoplankton community patterns in the Taiwan Strait match the characte-ristics of their realized niches. Progress in Oceanography, 2020, 186: 102366 [26] Shang XM, Yang S, Sun J. Succession of phytoplankton communities from macro-scale to micro-scale in coastal waters of Qinhuangdao, China. Frontiers in Marine Science, 2024, 11: 1371196 [27] Du P, Jiang ZB, Wang YM, et al. Spatial heterogeneity of the planktonic protistan community in a semi-closed eutrophic bay, China. Journal of Plankton Research, 2019, 41: 223-239 [28] Jiang ZB, Gao YX, Chen Y, et al. Spatial heterogeneity of phytoplankton community shaped by a combination of anthropogenic and natural forcings in a long narrow bay in the East China Sea. Estuarine. Coastal and Shelf Science, 2019, 217: 250-261 [29] 张海波, 蔡燕红, 项有堂. 象山港水域浮游植物与赤潮生物种群动态研究. 海洋通报, 2005(1): 92-96 [30] Jeong HJ, Yoo YD, Kim JS, et al. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): Prey species, the effects of prey concentration, and grazing impact. Journal of Eukaryotic Microbiology, 2004, 51: 563-569 [31] Yih W, Kim HS, Jeong HJ, et al. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodi-nium rubrum. Aquatic Microbial Ecology, 2004, 36: 165-170 [32] 中国海湾志编纂委员会. 中国海湾志第五部分. 北京: 海洋出版社, 1992 [33] 国家质量监督检验检疫局, 中国国家标准化管理委员会. 海洋调查规范第6部分: 海洋生物调查(GB/T 12763.6—2007). 北京: 中国标准出版社, 2008 [34] 国家质量监督检验检疫局, 中国国家标准化管理委员会. 海洋调查规范第4部分: 海水化学要素调查(GB/T 12763.4—2007). 北京: 中国标准出版社, 2008 [35] 张云雷, 徐宾铎, 张崇良, 等. 基于Tweedie-GAM模型研究海州湾小黄鱼资源丰度与栖息环境的关系. 海洋学报, 2019, 41(12): 78-89 [36] 骆鑫, 曾江宁, 徐晓群, 等. 象山港浮游动物的分布特征及其中长期变化. 海洋通报, 2018, 37(1): 74-87 [37] 蔡惠文, 卓丽飞, 吕华庆, 等. 象山港Chl-a的分布及其与环境因子关系研究. 中国海洋大学学报:自然科学版, 2015, 45(8): 63-70 [38] 杨志, 冉莉华, 徐晓群, 等. 象山港水体的磷酸盐及其对赤潮的潜在影响. 海洋学报, 2018, 40(10): 61-70 [39] 江兴龙, 宋立荣. 泉州湾赤潮藻类优势种演替影响因子探讨. 海洋与湖沼, 2009, 40(6): 761-767 [40] 尤仲杰, 焦海峰. 象山港生态环境保护与修复技术研究. 北京: 海洋出版社, 2011 [41] 江志兵, 陈全震, 寿鹿, 等. 象山港人工鱼礁区的网采浮游植物群落组成及其与环境因子的关系. 生态学报, 2012, 32(18): 5813-5824 [42] 李婷, 韩晓, 林霞. 象山港国华电厂强增温海域浮游植物群落结构的季节性格局. 生态科学, 2014, 33(2): 353-360 [43] 孙军, 刘东艳, 钱树本. 一种海洋浮游植物定量研究分析方法——Utermöhl方法的介绍及其改进. 黄渤海海洋, 2002(2): 105-112 [44] 任敏, 刘莲, 何东海, 等. 试论滨海发电厂温排水对象山港赤潮的影响. 海洋开发与管理, 2012, 29(3): 87-89 [45] Barlow SB, Kugrens P. Cryptomonads from the Salton Sea, California. Hydrobiologia, 2002, 473: 129-137 |