[1] Zhao XX, Tian QX, Michelsen A, et al. Global pattern in terrestrial leaf litter decomposition: The effects of climate, litter chemistry, life form, growth form and mycorrhizal association. Agricultural and Forest Meteoro-logy, 2025, 362: 110368-110379 [2] Wu QX, Ni X, Sun XY, et al. Substrate and climate determine terrestrial litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: 4122-4130 [3] 周庭宇, 肖洋, 黄庆阳, 等. 森林凋落物分解的研究进展与展望. 中国农学通报, 2022, 38(33): 44-51 [4] Austin AT, Ballaré CL. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 4618-4622 [5] 赵小祥, 朱彬彬, 田秋香, 等. 叶片凋落物分解的主场优势研究进展. 植物生态学报, 2023, 47(5): 597-607 [6] Fanin N, Lin D, Freschet GT, et al. Home-field advantage of litter decomposition: From the phyllosphere to the soil. New Phytologist, 2021, 231: 1353-1358 [7] Zhu MH, Fanin N, Wang QK, et al. High functional breadth of microbial communities decreases home-field advantage of litter decomposition. Soil Biology and Biochemistry, 2024, 188: 109232-109243 [8] Austin AT, Vivanco L, González-Arzac A, et al. There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytologist, 2014, 204: 307-314 [9] 王阳, 王雪峰, 张伟东. 土壤线虫群落对森林凋落物分解主场效应的作用. 生态学报, 2018, 38(21): 7840-7849 [10] Palozzi JE, Lindo Z. Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology and Biochemistry, 2018, 124: 189-198 [11] Hunt HW, Ingham ER, Coleman DC, et al. Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology, 1988, 69: 1009-1016 [12] Gholz HL, Wedin DA, Smitherman SM, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Global Change Biology, 2000, 6: 751-765 [13] Bradford MA, Berg B, Maynard DS, et al. Understan-ding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104: 229-238 [14] 吴兴澳, 侯满福, 刘雨婷, 等. 桉树林种植年限对林下植物及其种间关联的影响. 生态学杂志, 2025, 44(3): 736-744 [15] 罗佳, 周小玲, 陈建华, 等. 桉树人工林土壤养分对凋落物分解的影响. 中南林业科技大学学报, 2017, 37(11): 132-139 [16] Handa IT, Aerts R, Berendse F, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509: 218-221 [17] 张培, 庞圣江, 杨保国, 等. 不同混交模式对桉树林分生长、凋落物量和土壤养分的影响. 西北农林科技大学学报: 自然科学版, 2021, 49(2): 31-37 [18] 李金金, 张健, 张阿娟, 等. 不同密度巨桉人工林林下植物多样性及根际土壤化感物质. 应用生态学报, 2020, 31(7): 2175-2184 [19] 朱琪, 邓海燕, 马安琪, 等. 不同混交比例桉树-红锥混交林对林下植被和土壤肥力的影响研究. 林业与环境科学, 2024, 40(4): 70-79 [20] 李艳红, 杨万勤, 罗承德, 等. 桉-桤不同混合比例凋落物分解过程中土壤动物群落动态. 生态学报, 2013, 33(1): 159-167 [21] Yang K, Zhu JJ, Zhang WW, et al. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology, 2022, 110: 1673-1686 [22] 李奥欣, 侯新村, 曾加佳, 等. 桉树油化学成分分析及α-松油醇的化感作用. 应用生态学报, 2020, 31(7): 2195-2201 [23] 王程成, 韦冰, 姚婧梅, 等. 三峡库区城镇河流凋落物分解对不同城镇化率的响应. 生态学报, 2025, 45(6): 1-13 [24] 刘小丽. 巨桉人工混交林混合凋落物分解特征. 硕士论文. 成都: 四川农业大学, 2023 [25] Prescott CE. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, 101: 133-149 [26] Cornwell WK, Cornelissen JHC, Allison SD, et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Global Change Biology, 2009, 15: 2431-2449 [27] Háttenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 191-218 [28] 周成城, 黄霞, 谢德金, 等. 基于GC-MS的福建柏萜类挥发物及其器官差异分析. 福建农林大学学报: 自然科学版, 2021, 50(2): 216-222 [29] 向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林凋落物分解过程中基质质量的变化. 西北农林科技大学学报: 自然科学版, 2015, 43(4): 65-72 [30] He W, Ma ZY, Pei J, et al. Effects of predominant tree species mixing on lignin and cellulose degradation during leaf litter decomposition in the Three Gorges Reservoir, China. Forests, 2019, 10: 360-369 [31] 郭嘉龙, 张丽仙, 杨丽, 等. 不同发育阶段杉木凋落物分解过程中难分解物质的动态特征. 江西农业大学学报, 2024, 46(6): 1488-1497 [32] Cepáková , Frouz J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Journal of Soil Science and Plant Nutrition, 2015, 15: 805-815 [33] Meier CL, Bowman WD. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 19780-19785 [34] 刘文飞, 樊后保, 沈芳芳, 等. 连续年龄序列桉树人工林凋落物分解的研究. 水土保持学报, 2010, 24(6): 132-136 [35] 郝建, 莫慧华, 黄弼昌, 等. 西南桦和尾巨桉凋落叶分解及其与土壤性质的相关性. 林业科学研究, 2016, 29(2): 202-208 [36] 董学德, 高鹏, 李腾, 等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响. 生态学报, 2021, 41(6): 2315-2325 [37] Giweta M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 2020, 44: 11-23 [38] Liu J, Liu XY, Song QN, et al. Synergistic effects: A common theme in mixed-species litter decomposition. New Phytologist, 2020, 227: 757-765 [39] Berg B, McClaugherty C. Role of chemical constituents in regulating decay rates and stable fractions: Effects of initial and changing chemical composition on decomposition and organic matter accumulation// Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Cham, Switzerland: Springer, 2020: 129-163 [40] Ostertag R, Restrepo C, Dalling JW, et al. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 2022, 54: 309-326 [41] 张悦, 张艺凡, 马怡波, 等. 森林生态系统凋落物分解影响因素研究进展. 环境生态学, 2023, 5(4): 45-56 [42] Zhang MH, Cheng XL, Geng QH, et al. Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 2019, 28: 1469-1486 [43] Háttenschwiler S, Jørgensen HB. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 2010, 98: 754-763 [44] Cotrufo MF, Soong JL, Horton AJ, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779 [45] Waring BG. A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems, 2012, 15: 999-1009 [46] Zhang Z, Wang ZY, Ye SM, et al. Dynamic changes of soil aggregate-associated phosphorus adsorption-desorption characteristics in a chronosequence of Chinese fir plantations. Soil and Tillage Research, 2025, 249: 106479-106492 |