欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (9): 2694-2702.doi: 10.13287/j.1001-9332.202509.017

• 多因子障碍粮田产能提升专栏(专栏策划: 孙志梅、黄少辉、张俊华) • 上一篇    下一篇

有机肥调控盐碱土氮循环的微生物驱动机制

秦学1,2, 崔钰爽1, 黄魁2, 陈晓波1, 孙宏勇3, 黄亚丽1*, 段自豪2, 杨添琦1   

  1. 1河北科技大学环境科学与工程学院/河北省沼气循环生态农业技术创新中心, 石家庄 050018;
    2兰州交通大学环境与市政工程学院, 兰州 730070;
    3中国科学院遗传与发育生物学研究所农业资源研究中心, 石家庄 050022
  • 收稿日期:2025-03-03 接受日期:2025-07-17 出版日期:2025-09-18 发布日期:2026-04-18
  • 通讯作者: *E-mail: huangyali2291@163.com
  • 作者简介:秦学,女,1990年生,硕士研究生。主要从事有机废弃物资源化利用与盐碱土改良研究。E-mail:2058867352@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1901004-5,2023YFD1902602-2)

Microbial drivers of nitrogen cycling in saline-alkali soils under organic fertilization

QIN Xue1,2, CUI Yu-shuang1, HUANG Kui2, CHEN Xiaobo1, SUN Hongyong3, HUANG Yali1*, DUAN Zihao2, YANG Tianqi1   

  1. 1School of Environmental Science and Engineering, Hebei University of Science and Technology/Hebei Biogas Cycle Ecological Agriculture Technology Innovation Center, Shijiazhuang 050018, China;
    2School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
    3Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
  • Received:2025-03-03 Accepted:2025-07-17 Online:2025-09-18 Published:2026-04-18

摘要: 探明有机肥施用对盐碱土氮循环的调控机制,解析微生物群落-功能基因协同作用路径,可为盐碱土可持续改良提供理论依据。本研究基于中国科学院南皮生态农业试验站4年小麦定位试验(2018—2022年),设置化肥(复合肥N∶P2O5∶K2O为18∶22∶5)和有机肥(等氮量施用腐熟牛粪有机肥)2个处理,通过常规养分分析和高通量宏基因组测序技术,结合Mantel检验与功能基因关联分析法,分析有机肥对盐碱土氮转化微生物群落的影响及其调控机制。结果表明: 与化肥处理相比,施用有机肥处理耕层土壤总氮和碱解氮含量分别显著提高了26.9%和34.5%,硝态氮含量显著降低了28.3%。施用有机肥显著提高了微生物ACE指数,但Shannon指数无显著变化。有机肥处理提高了假双头斧形菌属(耐盐菌属)的相对丰度,增幅达517.0%,显著改变了微生物群落结构,显著上调了硝酸盐还原基因(napA)和反硝化基因(norB/nosZ)丰度,协同提高了谷氨酰胺合成酶的相对丰度。Mantel检验揭示,假双头斧形菌属相对丰度与土壤总氮、碱解氮和铵态氮含量均呈显著正相关,norB基因相对丰度与上述3个氮素指标亦呈显著正相关。表明有机肥通过调控关键菌群和功能基因丰度改变了盐碱土氮代谢网络,缓解了盐碱土的氮素阻滞。

关键词: 宏基因组学, 有机肥, 盐碱土, 氮循环, 功能基因

Abstract: Exploring the regulatory impacts of organic fertilizer application on nitrogen cycling and analyzing the synergistic pathway between microbial community and functional genes can provide theoretical basis for sustainable improvement of saline alkali soil. We conducted a 4-year wheat experiment (2018-2022) at Nanpi Ecological Agriculture Experimental Station of the Chinese Academy of Sciences, with two treatments: chemical fertilizer (compound fertilizer with N:P2O5:K2O=18:22:5) and organic fertilizer (decomposed cattle manure organic fertilizer was applied at the same amount of nitrogen). Through conventional nutrient analysis and high-throughput macro genome sequencing technology, combined with Mantel test and functional gene association analysis, we analyzed the impacts of organic fertilizer on the microbial community involved in nitrogen transformation in saline alkali soil and its regulation mechanism. The results showed that compared with chemical fertilizer treatment, the application of organic fertilizer significantly increased the total nitrogen and alkali hydrolyzed nitrogen content of the topsoil by 26.9% and 34.5%, respectively, while the nitrate content significantly decreased by 28.3%. The application of organic fertilizer significantly increased the ACE index, but did not affect the Shannon index. The organic fertilizer treatment increased the relative abundance of the salt-tolerant genus Pseudolabrys by 517.0%, altered the microbial community structure, increased the abundance of the nitrate reductase gene (napA) and denitrification genes (norB and nosZ), as well as the relative abundance of glutamine synthetase. The Mantel test revealed that the relative abundance of the false double headed axe shaped fungus genus was significantly positively correlated with soil total nitrogen, alkaline nitrogen, and ammonium nitrogen contents. Similarly, the abundance of the norB gene showed significant positive correlations with these three nitrogen indicators. Our results demonstrated that organic fertilizer alleviates nitrogen limitation in saline-alkali soils and altered the nitrogen metabolism network through altering key microbial taxa and functional gene abundance.

Key words: metagenomics, organic fertilizer, saline-alkali soil, nitrogen cycle, functional gene