[1] 冯起, 尹鑫卫, 朱猛, 等. 统筹推进西北地区盐碱地综合治理利用: 现状、挑战与对策建议. 中国科学院院刊, 2024, 39(12): 2060-2073 [2] Wang GZ, Ni G, Feng G, et al. Saline-alkali soil reclamation and utilization in China: Progress and prospects. Frontiers of Agricultural Science and Engineering, 2024, 11: 216-228 [3] 丁文成, 宋大利, 周卫. 我国耕地质量主控因素及提升策略. 植物营养与肥料学报, 2024, 30(8): 1580-1594 [4] 赵耕毛, 杨梦圆, 陈硕, 等. 我国盐碱地治理: 现状、问题与展望. 南京农业大学学报, 2025, 48(1): 14-26 [5] Li SP, Wang C, Huang HY, et al. Vermicompost and Azotobacter chroococcum increase nitrogen retention in saline-alkali soil and nitrogen utilization of maize. Applied Soil Ecology, 2024, 201: 105512 [6] Liu Z, Shang HG, Han F, et al. Improvement of nitrogen and phosphorus availability by Pseudoalteromonas sp. during salt-washing in saline-alkali soil. Applied Soil Ecology, 2021, 168: 104117 [7] Hui KL, Xi BD, Tan WB, et al. Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environmental Research, 2022, 215: 114267 [8] Li SP, Zhao L, Wang C, et al. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Science of the Total Environment, 2023, 891: 164530 [9] 殷启杰, 姜建武, 殷汉琴, 等. 有机物料投入对新垦耕地土壤养分和微生物代谢的影响. 应用生态学报, 2025, 36(4): 969-983 [10] Li T, Wang SN, Liu SL, et al. Trade-offs of organic amendment input on soil quality and crop productivity in saline-alkali land globally: A meta-analysis. European Journal of Agronomy, 2025, 164: 127471 [11] Yu DD, Miao QF, Shi HB, et al. Effects of combined application of organic and inorganic fertilizers on physical and chemical properties in saline-alkali soil. Agronomy, 2024, 14: 2236-2256 [12] Liu ML, Wang C, Liu XL, et al. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Applied Soil Ecology, 2020, 156: 103705 [13] Sun RB, Wang DZ, Guo ZB, et al. Combined application of organic manure and chemical fertilizers stabilizes soil N-cycling microflora. Soil Ecology Letters, 2023, 5: 220165 [14] Yang YJ, Liu HX, Chen Y, et al. Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis. Science of the Total Environment, 2024, 921: 171048 [15] Hei ZW, Peng YT, Hao SL, et al. Full substitution of chemical fertilizer by organic manure decreases soil N2O emissions driven by ammonia oxidizers and gross nitrogen transformations. Global Change Biology, 2023, 29: 7117-7130 [16] Wang XY, Zhu H, Yan BX, et al. Ammonia volatilization, greenhouse gas emissions and microbiological mechanisms following the application of nitrogen fertilizers in a saline-alkali paddy ecosystem. Geoderma, 2023, 433: 116460 [17] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [18] Yao RJ, Yang JS, Wang XP, et al. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degradation & Development, 2021, 32: 338-353 [19] Zhang SY, Li X, Chen K, et al. Long-term fertilization altered microbial community structure in an aeolian sandy soil in northeast China. Frontiers in Microbiology, 2022, 13: 979759 [20] Han JQ, Dong YY, Zhang M, et al. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Applied Soil Ecology, 2021, 165: 103966 [21] Dang HL, Zhao WQ, Zhang T, et al. Great gerbil burrowing-induced microbial diversity shapes the rhizosphere soil microenvironments of Haloxylon ammodendron in temperate deserts. Frontiers in Microbiology, 2022, 13: 960594 [22] Hoang HG, Thuy BTP, Lin C, et al. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere, 2022, 300: 134514 [23] Li RC, Gao YX, Chen Q, et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil and Tillage Research, 2021, 212: 105045 [24] 刘银双, 牛宏进, 赵阳阳, 等. 河北省不同盐渍化土壤类型的微生物多样性与种群结构. 环境科学, 2023, 44(12): 7004-7013 [25] Bai YC, Li BX, Xu CY, et al. Intercropping walnut and tea: Effects on soil nutrients, enzyme activity, and microbial communities. Frontiers in Microbiology, 2022, 13: 852342 [26] Xu S, Zhang ZY, Xie XW, et al. Comparative genomics provides insights into the potential biocontrol mechanism of two Lysobacter enzymogenes strains with distinct antagonistic activities. Frontiers in Microbiology, 2022, 13: 966986 [27] Liu MH, Feng FD, Li LJ, et al. Possibility of exogenous organic carbon input to increase global soil nitrogen supply potential: A meta-analysis. Soil and Tillage Research, 2023, 232: 105773 [28] Lee SA, Kim HS, Sang MK, et al. Effect of Bacillus mesonae H20-5 treatment on rhizospheric bacterial community of tomato plants under salinity stress. Plant Pathology Journal, 2021, 37: 662-672 [29] Du R, Gao D, Wang YT, et al. Heterotrophic sulfur oxidation of Halomonas titanicae SOB56 and its habitat adaptation to the hydrothermal environment. Frontiers in Microbiology, 2022, 13: 888833 [30] Hermann L, Dempwolff F, Steinchen W, et al. The MocR/GabR ectoine and hydroxyectoine catabolism regulator EnuR: Inducer and DNA binding. Frontiers in Microbiology, 2021, 12: 764731 [31] 闻鸣, 刘禹, 冯朝阳, 等. 不同土地利用方式下土壤氮循环关键过程的差异及其驱动因素. 应用生态学报, 2025, 36(5): 1387-1397 [32] Gazitúa MC, Vik DR, Roux S, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. The ISME Journal, 2021, 15: 981-998 [33] Liu YY, Chen YX, Duan PP, et al. Microbially mediated mechanisms underlie the increased soil N2O emissions under nitrogen fertilization in purple soil. Applied Soil Ecology, 2024, 204: 105725 [34] 马龙, 高伟, 栾好安, 等. 有机肥/秸秆替代化肥模式对设施菜田土壤氮循环功能基因丰度的影响. 植物营养与肥料学报, 2021, 27(10): 1767-1778 [35] 方芳, 陈少华. 功能基因在反硝化菌群生态学研究中的应用. 生态学杂志, 2010, 29(9): 1836-1845 [36] Zhu A, Liu HL, Wang YH, et al. Grazing intensity changed the activities of nitrogen assimilation related enzymes in desert steppe plants. BMC Plant Biology, 2021, 21: 436 |