应用生态学报 ›› 2021, Vol. 32 ›› Issue (9): 3079-3088.doi: 10.13287/j.1001-9332.202109.027
黄凯平1, 李永夫1,2*, 宋成芳1, 屈田华1, 刘波3, 罗海燕3, 李永春1, 蔡延江1
收稿日期:
2021-01-27
接受日期:
2021-06-22
出版日期:
2021-09-15
发布日期:
2022-03-15
通讯作者:
* E-mail: yongfuli@zafu.edu.cn
作者简介:
黄凯平, 女, 1995年生, 硕士研究生。主要从事森林土壤碳、氮循环与全球变化的研究。E-mail: huangkaipingzafu@163.com
基金资助:
HUANG Kai-ping1, LI Yong-fu1,2*, SONG Cheng-fang1, QU Tian-hua1, LIU Bo3, LUO Hai-yan3, LI Yong-chun1, CAI Yan-jiang1
Received:
2021-01-27
Accepted:
2021-06-22
Online:
2021-09-15
Published:
2022-03-15
Contact:
* E-mail: yongfuli@zafu.edu.cn
Supported by:
摘要: 本研究于2019年7月—2020年7月在浙江省杭州市典型毛竹林布置野外控制实验,采用静态箱-气相色谱法测定毛竹林土壤N2O通量,分析生物质炭(10 t·hm-2)、氮沉降(60 kg N·hm-2·a-1)、生物质炭+氮沉降混合处理对土壤N2O通量的影响,并探讨了土壤N2O通量与环境因子的关系。结果表明: 与对照相比,氮沉降处理使毛竹林土壤N2O年累积排放量增加了14.6%,而施用生物质炭及其与氮沉降混合处理则分别降低了20.8%和10.6%。相关分析表明,在所有处理下,毛竹林土壤N2O排放速率与土壤温度、硝态氮含量、脲酶和蛋白酶活性之间均呈极显著相关,与土壤铵态氮含量均呈显著相关。在氮沉降背景下,施用生物质炭对毛竹林土壤N2O通量仍具有显著的减排效应。
黄凯平, 李永夫, 宋成芳, 屈田华, 刘波, 罗海燕, 李永春, 蔡延江. 氮沉降和施生物质炭对毛竹林土壤N2O通量的影响[J]. 应用生态学报, 2021, 32(9): 3079-3088.
HUANG Kai-ping, LI Yong-fu, SONG Cheng-fang, QU Tian-hua, LIU Bo, LUO Hai-yan, LI Yong-chun, CAI Yan-jiang. Effects of nitrogen deposition and biochar application on soil N2O fluxes in a Moso bamboo plantation[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3079-3088.
[1] Solomon S, Manning M, Chen Z, et al. Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007 [2] Pu YL, Zhu B, Dong ZX, et al. Soil N2O and NOx emissions are directly linked with N-cycling enzymatic activities. Applied Soil Ecology, 2019, 139: 15-24 [3] Song YZ, Li YF, Cai YJ, et al. Biochar decreases soil N2O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates. Geoderma, 2019, 348: 135-145 [4] IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013 [5] Liu X, Chen CR, Wang WJ, et al. Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency. Soil Biology and Biochemistry, 2012, 57: 292-300 [6] Lehmann J. A handful of carbon. Nature, 2007, 447: 142-144 [7] Zhang AF, Liu YM, Pan GX, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 2011, 351: 263-275 [8] Pokharel P, Kwak JH, Ok YS, et al. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Science of the Total Environment, 2018, 625: 1247-1256 [9] 肖永恒, 李永夫, 王战磊, 等. 竹叶及其生物质炭输入对板栗林土壤N2O通量的影响. 植物营养与肥料学报, 2016, 22(3): 697-706 [Xiao Y-H, Li Y-F, Wang Z-L, et al. Effects of bamboo leaf and biochar input on soil N2O flux in chestnut forest. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 697-706] [10] Song XZ, Zhou GM, Gu HH, et al. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant and Soil, 2015, 395: 391-400 [11] Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892 [12] Ren H, Chen YC, Wang XT, et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science, 2017, 356: 749-752 [13] Zhang JB, Li Q, Lv JH, et al. Management scheme influence and nitrogen addition effects on soil CO2, CH4, and N2O fluxes in a Moso bamboo plantation. Forest Ecosystems, 2021, 8: doi: 10.1186/s40663-021-00285-0 [14] 李超, 刘苑秋, 王翰琨, 等. 庐山毛竹扩张及模拟氮沉降对土壤N2O和CO2排放的影响. 土壤学报, 2019, 56(1): 146-155 [Li C, Liu Y-Q, Wang H-K, et al. Effects of nitrogen deposition on soil N2O and CO2 emissions in Phyllostachys lusifera. Acta Pedologica Sinica, 2019, 56(1): 146-155] [15] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析. 世界竹藤通讯, 2019, 17(6): 45-48 [Li Y-M, Feng P-F. Analysis of bamboo resources in China based on the Ninth National Forest Resources Inventory. World Bamboo and Rand Communications, 2019, 17(6): 45-48] [16] Li YF, Zhou GM, Jiang PK, et al. Carbon accumulation and carbon forms in tissues during the growth of young bamboo (Phyllostachy pubescens). The Botanical Review, 2011, 77: 278-286 [17] Yan WB, Mahmood Q, Peng DL, et al. The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in southeastern China. Soil and Tillage Research, 2015, 153: 120-130 [18] Song L, Tian P, Zhang JB, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China. Science of the Total Environment, 2017, 609: 1303-1311 [19] Lin ZW, Li YF, Tang CX, et al. Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biology and Fertility of Soils, 2018, 54: 467-480 [20] 林子文. 施用生物质炭基肥和化肥对毛竹林土壤N2O排放的影响. 硕士论文. 杭州: 浙江农林大学, 2019 [Lin Z-W. Effects of Biochar based Fertilizer and Chemical Fertilizer on Soil N2O Emission in Moso Bamboo Forest. Master Thesis. Hangzhou: Zhejiang A&F University, 2019] [21] Liu J, Jiang PK, Li YF, et al. Responses of N2O flux from forest soils to land use change in subtropical China. The Botanical Review, 2011, 77: 320-325 [22] Yuen JQ, Fung T, Ziegler AD. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 2017, 393: 113-138 [23] 胡帅栋. 不同用量生物质炭输入对毛竹林土壤N2O排放的影响及其机理. 硕士论文. 杭州: 浙江农林大学, 2018 [Hu S-D. Effects of Different Amounts of Biochar Input on Soil N2O Emission in Moso Bamboo Forest and Its Mechanism. Master Thesis. Hangzhou: Zhejiang A&F University, 2018] [24] 付晓青, 李勇. 土壤氧化亚氮排放时空变异性及其方法研究进展. 生态学杂志, 2012, 31(3): 724-730 [Fu X-Q, Li Y. Research progress in spatial and temporal variability of soil nitrous oxide emission and its metho-ds. Chinese Journal of Ecology, 2012, 31(3): 724-730] [25] Li YF, Zhang JJ, Chang SX, et al. Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools. Forest Ecology and Management, 2014, 312: 161-169 [26] Wang YS, Wang YH. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences, 2003, 20: 842-844 [27] Alves BJR, Smith KA, Flores RA, et al. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biology and Biochemistry, 2012, 46: 129-135 [28] Bray RH, Kurtz LT. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 1945, 59: 39-46 [29] Zhang JJ, Li YF, Chang SX. Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation. Plant and Soil, 2014, 376: 363-375 [30] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2001: 39-61 [Bao S-D. Soil and Agricultural Chemical Analysis. 3rd Ed. Beijing: China Agriculture Press, 2001: 39-61] [31] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707 [32] Cai XQ, Lin ZW, Penttinen P, et al. Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecology and Management, 2018, 422: 161-171 [33] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 1988, 6: 68-72 [34] Ladd JN, Butler JHA. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry, 1972, 4: 19-30 [35] Sun LY, Li L, Chen ZZ, et al. Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Science and Plant Nutrition, 2014, 60: 254-265 [36] 王汝南. 模拟大气氮沉降对温带森林土壤温室气体交换通量的影响. 硕士论文. 北京: 北京林业大学, 2012 [Wang R-N. Effects of Simulated Atmospheric Nitrogen Deposition on Greenhouse Gas Exchange Fluxes in Temperate Forest Soil. Master Thesis. Beijing: Beijing Forestry University, 2012] [37] Sun ZC, Sänger A, Rebensburg P, et al. Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Science of the Total Environment, 2017, 578: 557-565 [38] Singh BP, Hatton BJ, Singh B, et al. Influence of biochar on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 2010, 39: 1224-1235 [39] Augustenborg CA, Hepp S, Kammann C, et al. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. Journal of Environmental Quality, 2011, 41: 1203-1209 [40] 莫江明, 方运霆, 林而达, 等. 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报, 2006, 30(6): 901-910 [Mo J-M, Fang Y-T, Lin R-D, et al. Soil N2O emission and its response to simulated N deposition in the Dinghu Mountain forest, China. Journal of Plant Ecology, 2006, 30(6): 901-910] [41] 黄超, 刘丽君, 章明奎, 等. 生物质炭对红壤性质和黑麦草生长的影响. 浙江大学学报, 2011, 37(4): 439-445 [Huang C, Liu L-J, Zhang M-K, et al. Effects of biochar on properties of red soil and growth of ryegrass. Journal of Zhejiang University, 2011, 37(4): 439-445] [42] Yin S, Zhang X, Pumpanen J, et al. Seasonal variation in soil greenhouse gas emissions at three age-stages of dawn redwood (Metasequoia glyptostroboides) stands in an Alluvial island, eastern China. Forests, 2016, 7(11), doi: 10.3390/f 7110256 [43] Zou JL, Tobin B, Luo YQ, et al. Differential responses of soil CO2, and N2O fluxes to experimental warming. Agricultural and Forest Meteorology, 2018, 259: 11-22 [44] Saarnio S, Heimonen K, Kettunen R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biology and Biochemistry, 2013, 58: 99-106 [45] Hardie M, Clothier B, Bound S, et al. Does biochar influence soil physical properties and soil water availability? Plant and Soil, 2014, 376: 347-361 [46] 程效义, 刘晓琳, 孟军, 等. 生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响. 农业环境科学学报, 2016, 35(4): 801-807 [Cheng X-Y, Liu X-L, Meng J, et al. Effects of biochar on NH3 volatilization, N2O emission and nitrogen use efficiency of brown soil. Journal of Agro-Environment Science, 2016, 35(4): 801-807] [47] 王峰, 陈玉真, 吴志丹, 等. 施用生物质炭对酸性茶园土壤氨挥发的影响. 茶叶科学, 2017, 37(1): 60-70 [Wang F, Chen Y-Z, Wu Z-D, et al. Effects of biochar application on ammonia volatilization from soil of acid tea plantation. Tea Science, 2017, 37(1): 60-70] [48] Sarkhot DV, Berhe AA, Ghezzehei TA. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environmental Quality, 2012, 41: 1107-1114 [49] Sika MP, Hardie AG. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. European Journal of Soil Science, 2014, 65: 113-119 [50] 陈立新, 段文标. 模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响. 应用生态学报, 2011, 22(8): 2005-2012 [Chen L-X, Duan W-B. Effects of simulated nitrogen deposition on soil available nitrogen form and content in typical temperate forest. Chinese Journal of Applied Ecology, 2011, 22(8): 2005-2012] [51] 向元彬, 黄从德, 胡庭兴, 等. 模拟氮沉降对常绿阔叶林土壤有效氮形态和含量的影响. 西北农林科技大学学报: 自然科学版, 2016, 44(12): 73-80 [Xiang Y-B, Huang C-D, Hu T-X, et al. Effects of simulated nitrogen deposition on soil available nitrogen form and content in evergreen broad-leaved forest. Journal of Northwest A&F University: Natural Science, 2016, 44(12): 73-80] [52] 孙宇, 彭天驰, 李顺, 等. 模拟氮沉降对湿性常绿阔叶次生林土壤碳氮组分和酶活性的影响. 水土保持学报, 2019, 33(2): 235-243, 250 [Sun Y, Peng T-C, Li S, et al. Effects of simulated nitrogen deposition on soil carbon and nitrogen components and enzyme activities in wet evergreen broad-leaved secondary forest. Journal of Soil and Water Conservation, 2019, 33(2): 235-243, 250] [53] 陈向峰, 刘娟, 姜培坤, 等. 模拟氮沉降对毛竹林土壤生化特性和酶活性的影响. 水土保持学报, 2020, 34(5): 277-284 [Chen X-F, Liu J, Jiang P-K, et al. Effects of simulated nitrogen deposition on soil biochemical characteristics and enzyme activities of Moso bamboo forest. Journal of Soil and Water Conservation, 2020, 34(5): 277-284] [54] 雷赵枫. 模拟氮沉降和添加生物炭对毛竹林土壤可溶性有机碳、氮的影响. 硕士论文. 杭州: 浙江农林大学, 2019 [Lei Z-F. Effects of Simulated Nitrogen Deposition and Addition of Biochar on Soil Soluble Organic Carbon and Nitrogen in Moso Bamboo Forest. Master Thesis. Hanghzou: Zhejiang A&F University, 2019] [55] 张星, 张晴雯, 刘杏认, 等. 施用生物炭对农田土壤氮素转化关键过程的影响. 中国农业气象, 2015, 36(6): 709-716 [Zhang X, Zhang Q-W, Liu X-R, et al. Effects of biochar application on key processes of soil nitrogen conversion in farmland. Chinese Journal of Agrometeorology, 2015, 36(6): 709-716] [56] 郭景恒, 张逸, 何骞, 等. 氮沉降影响下酸性森林土壤中水溶性有机氮的分布特征. 环境化学, 2011, 30(6): 1121-1125 [Guo J-H, Zhang Y, He Q, et al. Distribution characteristics of water-soluble organic nitrogen in acidic forest soil under the influence of nitrogen deposition. Environmental Chemistry, 2011, 30(6): 1121-1125] [57] Zhang AF, Cui LQ, Pan GX, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 2010, 139: 469-475 [58] Dempster DN, Jones DL, Murphy DV. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research, 2012, 50: 216-221 [59] Demisie W, Zhang M. Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research, 2015, 10: 755-766 [60] Sinsabaugh RL, Findlay S. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microbial Ecology, 1995, 30: 127-141 [61] Liu J, Jiang PK, Wang HL, et al. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 2011, 262: 1131-1137 [62] Baiga R, Rajashekhar BK, Nicholson F. Effects of biochar, urea and their co-application on nitrogen mineralization in soil and growth of Chinese cabbage. Soil Use and Management, 2017, 33: 54-61 [63] 尚杰, 耿增超, 陈心想, 等. 生物炭对土壤酶活性和糜子产量的影响. 干旱地区农业研究, 2015, 33(2): 146-151 [Shang J, Geng Z-C, Chen X-X, et al. Effects of biochar on soil enzyme activity and millet yield. Agricultural Research in the Arid Areas, 2015, 33(2): 146-151] [64] Huang M, Zhou X, Chen J, et al. Interaction of changes in pH and urease activity induced by biochar addition affects ammonia volatilization on an acid paddy soil following application of urea. Communications in Soil Science and Plant Analysis, 2017, 48: 107-112 [65] 周际海, 袁东东, 袁颖红, 等. 生物质炭与有机物料混施对土壤温室气体排放和微生物活性的影响. 环境科学学报, 2018, 38(7): 2849-2857 [Zhou J-H, Yuan D-D, Yuan Y-H, et al. Effects of biochar mixed with organic materials on greenhouse gas emissions and microbial activity in soil. Chinese Journal of Environmental Sciences, 2018, 38(7): 2849-2857] [66] Liu Y, Lu H, Yang S, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research, 2016, 191: 161-167 |
[1] | 孙官发, 陆梅, 闪昇阳, 赵定蓉, 孙煜佳, 刘国庆, 赵旭燕, 冯峻. 短期氮沉降对纳帕海高寒退化疏花早熟禾草甸土壤呼吸干湿季变化的影响 [J]. 应用生态学报, 2024, 35(2): 390-398. |
[2] | 常婕, 居新, 伊李凯, 宁亚楠, 刁华杰, 郝杰, 王常慧, 董宽虎. 不同水平氮添加下华北盐渍化草地根际土壤阴阳离子特征 [J]. 应用生态学报, 2024, 35(1): 212-218. |
[3] | 张雯怡, 姜振辉, 潘丽霞, 周家树, 刘娟, 蔡延江, 李永夫. 玉米秸秆及其生物质炭输入对毛竹林土壤有机碳化学组分与碳降解功能基因的影响 [J]. 应用生态学报, 2023, 34(9): 2383-2390. |
[4] | 孔东彦, 杨灵芳, 刁静文, 郭鹏. 不同生境下氮沉降对土壤N2O通量影响的整合分析 [J]. 应用生态学报, 2023, 34(8): 2171-2177. |
[5] | 代泽成, 刘月秀, 党宁, 王志瑞, 蔡江平, 张玉革, 宋永波, 李慧, 姜勇. 长期氮水添加对温带草原土壤化学性质和微生物学特性的短期遗留效应 [J]. 应用生态学报, 2023, 34(7): 1834-1844. |
[6] | 吕晶花, 赵旭燕, 陆梅, 李聪, 杨志东, 刘攀, 陈志明, 冯峻. 氮沉降下纳帕海草甸植被与土壤变化对微生物生物量碳氮的影响 [J]. 应用生态学报, 2023, 34(6): 1525-1532. |
[7] | 刘妍霁, 刘子恺, 金圣圣, 邓慧玉, 沈菊培, 贺纪正. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应 [J]. 应用生态学报, 2023, 34(3): 639-646. |
[8] | 史加勉, 宋鸽, 刘珊珊, 郑勇. 杉木林土壤丛枝菌根真菌形态特征及孢子相关细菌多样性对模拟氮沉降和干旱的响应 [J]. 应用生态学报, 2023, 34(12): 3291-3300. |
[9] | 王毅焕, 靳一丹, 姜铭楷, 马书琴, 陈有超, 蔡延江. 短期氮沉降改变毛竹林凋落物和土壤有机质化学组成 [J]. 应用生态学报, 2023, 34(10): 2593-2600. |
[10] | 宋鸽, 李晓杰, 王全成, 吕茂奎, 谢锦升, 贺纪正, 郑勇. 杉木人工林土壤微生物生物量和碳源利用能力对模拟氮沉降和干旱的响应 [J]. 应用生态学报, 2022, 33(9): 2388-2396. |
[11] | 王海珍, 陆宇明, 张磊, 李啸灵, 林伟盛, 郭剑芬. 采伐剩余物不同处理方式对杉木幼林土壤有机氮组分的影响 [J]. 应用生态学报, 2022, 33(5): 1199-1206. |
[12] | 白美霞, 司徒高铭, 李松昊, 邬奇峰, 梁辰飞, 秦华, 陈俊辉. 生物质炭配施有机物料对贫瘠红壤酶活性和微生物碳源代谢功能的影响 [J]. 应用生态学报, 2022, 33(5): 1283-1290. |
[13] | 高贝, 胡艳宇, 张志委, 丁聪, 杨雁茹, 吕晓涛. 氮素添加对呼伦贝尔草甸草原植物氮钾元素含量和计量比的影响 [J]. 应用生态学报, 2022, 33(4): 981-987. |
[14] | 刘建萍, 龙莹, 李晓红. 生物质炭施用量对大豆农艺性状和营养物质含量的影响 [J]. 应用生态学报, 2022, 33(4): 1069-1073. |
[15] | 秦淑琦, 彭琴, 董云社, 齐玉春. 土壤呼吸对降雨变化和氮沉降交互作用响应的研究进展 [J]. 应用生态学报, 2022, 33(4): 1145-1152. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||