[1] Liu XJ, Zhang Y, Han WX, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462 [2] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44(5): 475-493 [3] Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 024019 [4] Shi XZ, Hu HW, Wang JQ, et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 2018, 126: 114-122 [5] Wang JQ, Shi XZ, Zheng CY, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 2020, 755: 142449 [6] 李猛, 张恩平, 张淑红, 等. 长期不同施肥设施菜地土壤酶活性与微生物碳源利用特征比较. 植物营养与肥料学报, 2017, 23(1): 44-53 [7] Treseder KK. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 2008, 11: 1111-1120 [8] Shao YH, Liu T, Eisenhauer N, et al. Plants mitigate detrimental nitrogen deposition effects on soil biodiversity. Soil Biology and Biochemistry, 2018, 127: 178-186 [9] 陈松鹤, 徐开未, 樊高琼, 等. 长期施氮对饲草玉米产量、土壤养分和微生物数量的影响. 四川农业大学学报, 2019, 37(3): 314-320 [10] Chen QL, Ding J, Li CY, et al. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Science of the Total Environment, 2020, 734: 139479 [11] Chen QL, Ding J, Zhu D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141: 107686 [12] 冯慧芳, 林婉奇, 薛立. 氮磷添加和栽植密度对大叶相思林土壤微生物群落功能多样性的影响. 生态学报, 2021, 41(6): 2305-2314 [13] Thomas RQ, Canham CD, Weathers KC, et al. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 2010, 3: 13-17 [14] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529: 84-87 [15] 周广胜, 何奇瑾. 生态系统响应全球变化的陆地样带研究. 地球科学进展, 2012, 27(5): 563-572 [16] Anderegg WRL, Trugman AT, Badgley G, et al. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10: 1091-1095 [17] Luo WT, Griffin-Nolan RJ, Ma W, et al. Plant traits and soil fertility mediate productivity losses under extreme drought in C-3 grasslands. Ecology, 2021, 102: e03465 [18] Schimel JP. Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics, 2018, 49: 409-432 [19] Bastida F, Torres IF, Andrés-Abellán M, et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 2017, 23: 4185-4203 [20] Suseela V, Conant RT, Wallenstein MD, et al. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 2012, 18: 336-348 [21] Vicente-Serrano SM, Quiring SM, Peña-Gallardo M, et al. A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 2020, 201: 102953 [22] 秦永梅, 杨慧, 李杰, 等. 干旱对樱桃幼苗根际微生物及生理指标的影响. 西部林业科学, 2019, 48(4): 44-49 [23] 孙欣. 半干旱草原微生物物种组成和功能基因对降水变化的响应. 硕士论文. 北京: 清华大学, 2015 [24] Sun LJ, Qi YC, Dong YS, et al. Interactions of water and nitrogen addition on soil microbial community composition and functional diversity depending on the inter-annual precipitation in a Chinese steppe. Journal of Integrative Agriculture, 2015, 14: 788-799 [25] Jensen KD, Beier C, Michelsen A, et al. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Applied Soil Ecology, 2003, 24: 165-176 [26] Sun Y, Chen HYH, Jin L, et al. Drought stress induced increase of fungi:bacteria ratio in a poplar plantation. Catena, 2020, 193: 104607 [27] 吴华清, 陈小梅, 林媚珍, 等. 降水处理对南亚热带季风林土壤微生物群落结构的影响. 生态环境学报, 2016, 25(4): 583-590 [28] Su X, Su XL, Yang SC, et al. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest. Science of the Total Environment, 2020, 736: 139568 [29] 林婉奇, 薛立. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响. 生态学报, 2020, 40(12): 4188-4197 [30] 郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应. 应用生态学报, 2020, 31(7): 2464-2472 [31] Ackerman D, Millet DB, Chen X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 2019, 33: 100-107 [32] 占瑞芬, 孙国武, 赵兵科, 等. 中国东部副热带夏季风降水的准双周振荡及其可能维持机制. 高原气象, 2008, 27(增刊1): 98-108 [33] 余朝晖. 不同林龄杉木人工林生态功能比较研究. 林业勘察设计, 2018, 38(3): 6-14 [34] 张辉, 蔡一冰, 胡亚楠, 等. 目标树经营模式对杉木人工林生长及土壤肥力的短期影响. 西北林学院学报, 2022, 37(1): 191-197 [35] 李晓杰. 模拟降雨减少与氮沉降对杉木人工林土壤微生物及呼吸组分的影响. 博士论文. 福州: 福建师范大学, 2021 [36] Cheng SL, Fang HJ, Yu GR. Threshold responses of soil organic carbon concentration and composition to multi-level nitrogen addition in a temperate needle-broad-leaved forest. Biogeochemistry, 2018, 137: 219-233 [37] 中国科学院南京土壤研究所微生物室. 土壤微生物研究法. 北京: 科学出版社, 1985 [38] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [39] van Diepen LTA, Lilleskov EA, Pregitzer KS, et al. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 2010, 13: 683-695 [40] 赵学超, 徐柱文, 刘圣恩, 等. 氮添加对多伦草原土壤微生物呼吸及其温度敏感性的影响. 生态学报, 2020, 40(5): 1551-1561 [41] Monkai J, Goldberg SD, Hyde KD, et al. Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agriculture, Ecosystems and Environment, 2018, 265: 190-197 [42] Huang SD, Ye GF, Lin J, et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the Southeast China. Soil Biology and Biochemistry, 2018, 123: 242-249 [43] Williams A, de Vries FT. Plant root exudation under drought: Implications for ecosystem functioning. New Phytologist, 2020, 225: 1899-1905 [44] Högberg MN, Högberg P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 2002, 154: 791-795 [45] Deng Q, Hui DF, Zhang DQ, et al. Effects of precipitation increase on soil respiration: A three-year field experiment in subtropical forests in China. PLoS One, 2012, 7(7): e41493 [46] Zhou GY, Zhou XH, Liu RQ, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Functional Ecology, 2022, 34: 2634-2643 [47] Wang Y, Liu SR, Luan JW, et al. Nitrogen addition exacerbates the negative effect of throughfall reduction on soil respiration in a bamboo forest. Forests, 2021, 12: 724 [48] 田雅楠, 王红旗. Biolog法在环境微生物功能多样性研究中的应用. 环境科学与技术, 2011, 34(3): 50-57 [49] Gensberger ET, Gössl EM, Antonielli L, et al. Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community. PeerJ, 2015, 3: e862 |