[1] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron. Nature, 2012, 483: 198-200 [2] Hemingway JD, Rothman DH, Grant KE, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570: 228-231 [3] 周少龙, 李月梅, 张志春, 等. 三江源地带性土壤铁(铝)键合碳分布特征. 土壤学报, 2024, 61(4): 1031-1041 [4] 杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量、分布与调控. 科学通报, 2023, 68(6): 695-704 [5] Fluet-Chouinard E, Stocker BD, Zhang Z, et al. Extensive global wetland loss over the past three centuries. Nature, 2023, 614: 281-286 [6] Chen W, Chen WX, Dong K, et al. Iron-bound organic carbon distribution in freshwater wetlands with varying vegetation and hydrological regime. Wetlands, 2024, 44: 71 [7] Bai J, Luo M, Yang Y, et al. Iron-bound carbon increases along a freshwater-oligohaline gradient in a subtropical tidal wetland. Soil Biology and Biochemistry, 2021, 154: 108128 [8] Bi YX, Yan ZZ, Zhao WZ, et al. Seasonal coupling of iron (hydr-) oxides and organic carbon across elevations in Phragmites marshes of Yangtze Estuary. Catena, 2024, 241: 108073 [9] 刘旭阳, 王纯, 郭萍萍, 等. 闽江河口湿地围垦稻田对土壤铁碳结合特征的影响. 海洋地质与第四纪地质, 2024, 44(1): 44-54 [10] Lin MF, Chen Y, Cheng LW, et al. Response of topsoil Fe-bound organic carbon pool and microbial community to Spartina alterniflora invasion in coastal wetlands. Catena, 2023, 232: 107414 [11] Liu R, Ma T, Qiu WK, et al. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance. Science of the Total Environment, 2020, 701: 134776 [12] Huang XY, Liu XW, Liu JJ, et al. Iron-bound organic carbon and their determinants in peatlands of China. Geoderma, 2021, 391: 114974 [13] 熊立, 毛行锐. 测绘地理信息技术在地质工程测绘中的应用研究. 科学技术创新, 2024(17): 61-64 [14] Diamond JS, McLaughlin DL, Slesak RA, et al. Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands. Biogeosciences, 2020, 17: 901-915 [15] Zong MM, Lin C, Li SY, et al. Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of the Total Environment, 2021, 761: 143253 [16] 谭志强, 张奇, 李云良, 等. 鄱阳湖湿地典型植物群落沿高程分布特征. 湿地科学, 2016, 14(4): 506-515 [17] 徐晨瀛, 邹素珍, 任琼, 等. 鄱阳湖湿地土壤铁沿水位梯度的分布特征. 环境科学学报, 2024, 44(6): 340-349 [18] 刘信中, 樊三宝, 胡斌华. 江西南矶山湿地自然保护区综合科学考察. 北京: 中国林业出版社, 2006 [19] 徐晨瀛, 胡启武, 邹素珍, 等. 鄱阳湖湿地剖面土壤碳氮磷化学计量比沿高程梯度的变化特征[EB/OL]. (2024-07-18)[2024-09-01]. 环境科学研究, https://doi.org/10.13198/j.issn.1001-6929.2024.07.12 [20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [21] Zhang LL, Tang Z, Zhang SJ, et al. Effects of artificial aeration and iron inputs on the transformation of carbon and phosphorus in a typical wetland soil. Journal of Soils and Sediments, 2018, 18: 3244-3255 [22] Wang YY, Wang H, He JS, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 2017, 8: 15972 [23] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展. 土壤学报, 2018, 55(5): 1041-1050 [24] 陶婧, 马伟伟, 李文君, 等. 南黄海沉积物中活性铁氧化物对有机碳的保存作用. 海洋学报, 2017, 39(8): 16-24 [25] 林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响. 环境科学学报, 2022, 42(7): 466-477 [26] Shields MR, Bianchi TS, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 2016, 43: 1149-1157 [27] Duan X, Yu XF, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands. Soil Biology and Biochemistry, 2020, 149: 107949 [28] Liu CZ, Zhao Y, Ma L, et al. Metallic protection of soil carbon: Divergent drainage effects in Sphagnum vs. non-Sphagnum wetlands. National Science Review, 2024, doi: 10.1093/nsr/nwae178 [29] Longman J, Faust JC, Bryce C, et al. Organic carbon burial with reactive iron across global environments. Global Biogeochemical Cycles, 2022, 36: e2022GB007447 [30] Chen CM, Dynes JJ, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 2014, 48: 13751-13759 [31] Wagai R, Mayer LM. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta, 2007, 71: 25-35 [32] Ma WW, Zhu MX, Yang GP, et al. Iron geochemistry and organic carbon preservation by iron (oxyhydr) oxides in surface sediments of the East China Sea and the south Yellow Sea. Journal of Marine Systems, 2018, 178: 62-74 [33] Kaiser K, Guggenberger G. Sorptive stabilization of organic matter by microporous goethite: Sorption into small pores vs. surface complexation. European Journal of Soil Science, 2007, 58: 45-59 [34] Wiesmeier M, Urbanski L, Hobley E, et al. Soil organic carbon storage as a key function of soils: A review of drivers and indicators at various scales. Geoderma, 2019, 333: 149-162 [35] Zhang XW, Kong LW, Cui XL, et al. Occurrence characteristics of free iron oxides in soil microstructure: Evidence from XRD, SEM and EDS. Bulletin of Engineering Geology and the Environment, 2016, 75: 1493-1503 [36] Bhattacharyya A, Campbell AN, Tfaily MM, et al. Redox fluctuations control the coupled cycling of iron and carbon in tropical forest soils. Environmental Science & Technology, 2018, 52: 14129-14139 [37] Liu YL, Dong YQ, Ge TD, et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biology and Fertility of Soils, 2019, 55: 589-602 [38] Zhao YP, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: Degradation or sequestration? Plant and Soil, 2019, 443: 575-590 [39] 夏星, 杨建军. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展. 应用生态学报, 2019, 30(1): 348-358 [40] Chen CM, Hall SJ, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 2020, 11: 2255 [41] Xiao SY, Luo M, Liu YX, et al. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils. Science of the Total Environment, 2021, 756: 144056 [42] Ye CL, Huang WJ, Hall SJ, et al. Association of organic carbon with reactive iron oxides driven by soil pH at the global scale. Global Biogeochemical Cycles, 2022, 36: e2021GB007128 |