[1] Quan XK, Wang N, Wang CK. Thermal acclimation of leaf dark respiration of Larix gmelinii: A latitudinal transplant experiment. Science of the Total Environment, 2020, 743: 10.1016/j.scitotenv.2020.140634
[2] Wang H, Atkin OK, Keenan TF, et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biology, 2020, 26: 2573-2583
[3] Hogan JA, Baraloto C, Ficken C, et al. The physiological acclimation and growth response of Populus trichocarpa to warming. Physiologia Plantarum, 2021, 173: 1008-1029
[4] Wei X, Sendall KM, Stefanski A, et al. Consistent leaf respiratory response to experimental warming of three North American deciduous trees: A comparison across seasons, years, habitats and sites. Tree Physiology, 2016, 37: 285-300
[5] Gauthier PPG, Crous KY, Ayub G, et al. Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 2014, 65: 6471-6485
[6] 徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建. 应用生态学报, 2021, 32(1): 231-240
[7] Ren YH, Wang H, Harrison SP, et al. Reduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis. New Phytologist, 2024, 241: 578-591
[8] Aspinwall MJ, Drake JE, Campany C, et al. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. New Phytologist, 2016, 212: 354-367
[9] Lee TD, Reich PB, Bolstad PV. Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Functional Ecology, 2005, 19: 640-647
[10] Reich PB, Sendall KM, Stefanski A, et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 2016, 531: 633-636
[11] Chieppa J, Feller IC, Harris K, et al. Thermal acclimation of leaf respiration is consistent in tropical and subtropical populations of two mangrove species. Journal of Experimental Botany, 2023, 74: 3174-3187
[12] Atkin OK, Tjoelker MG. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 2003, 8: 343-351
[13] Slot M, Kitajima K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia, 2014, 177: 885-900
[14] 孙金伟, 姚付启, 张振华. 红松和紫椴叶片暗呼吸及其光抑制性在幼、成树间的差异. 应用生态学报, 2019, 30(5): 1463-1468
[15] Gimeno TE, Sommerville KE, Valladares F, et al. Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: Insights from two contrasting Acacia species. Functional Plant Biology, 2010, 37: 323-333
[16] Metcalfe DB, Lobo-do-Vale R, Chaves MM, et al. Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest. Functio-nal Ecology, 2010, 24: 524-533
[17] Quan XK, Wang CK. Acclimation and adaptation of leaf photosynthesis, respiration and phenology to climate change: A 30-year Larix gmelinii common-garden experi-ment. Forest Ecology and Management, 2018, 411: 166-175
[18] Oleksyn J, Modrzýnski J, Tjoelker MG, et al. Growth and physiology of Picea abies populations from elevatio-nal transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 2002, 12: 573-590
[19] 万丽娜, 王传宽, 全先奎. 纬度梯度移栽对兴安落叶松针叶暗呼吸温度敏感性的影响. 应用生态学报, 2019, 30(5): 1659-1666
[20] Tjoelker MG, Oleksyn J, Lorenc-Plucinska G, et al. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. New Phytologist, 2008, 181: 218-229
[21] Reich PB, Sendall KM, Rice K, et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 2015, 5: 148-152
[22] 杨传平, 秦泗华, 张维, 等. 中国兴安落叶松种源试验研究.Ⅱ. 种源初步区划. 东北林业大学学报, 1990(增刊2): 25-33
[23] 张培杲. 兴安落叶松种子区区划. 北京: 中国林业出版社, 1989
[44] 国家林业和草原局. 中国森林资源报告. 北京: 中国林业出版社, 2019
[25] Lee JY, Marotzke J, Bala G, et al. Future global climate: Scenario-based projections and near-term information// IPCC. Climate Change 2021: The Physical Science Basis. Working Group Ⅰ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge Univer-sity, 2021: 553-672
[26] Tian RP, Li LY, Zhang DJ, et al. Response of photosynthetic capacity to climate warming and its variation among 11 provenances of Dahurian larch (Larix gmelinii). Forests, 2024, 15: 10.3390/f15061024
[27] 杨传平, 姜静, 唐盛松, 等. 帽儿山地区21年生兴安落叶松种源试验. 东北林业大学学报, 2002, 30(6): 1-5
[28] 杨传平, 张维, 于秉君, 等. 中国兴安落叶松种源试验的研究.Ⅰ. 地理变异规律和模式. 东北林业大学学报, 1990(增刊2): 17-24
[29] Vitasse Y, Delzon S, Bresson CC, et al. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 2009, 39: 1259-1269
[30] Soolanayakanahally RY, Guy RD, Silim SN, et al. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsami-fera L.). Plant, Cell & Environment, 2009, 32: 1821-1832
[31] 万丽娜. 纬度梯度移栽对兴安落叶松叶片暗呼吸的影响. 硕士论文. 哈尔滨: 东北林业大学, 2019
[32] 袁书禹, 谢柳娟, 叶思源, 等. 黄渤海湿地芦苇光合特征对增温的响应. 应用生态学报, 2023, 34(7): 1825-1833
[33] Heskel MA, O’Sullivan OS, Reich PB, et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 3832-3837
[34] Atkin OK, Bruhn D, Hurry VM, et al. The hot and the cold: Unravelling the variable response of plant respiration to temperature. Functional Plant Biology, 2005, 32: 87-105
[35] 张海宁, 张俊, 张栋甲, 等. 兴安落叶松叶片解剖结构对气候暖化的响应及种源差异. 应用生态学报, 2024, 35(8): 2073-2081
[36] Atkin OK, Bloomfield KJ, Reich PB, et al. Global varia-bility in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206: 614-636
[37] Smith NG, Dukes JS. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Global Change Biology, 2012, 19: 45-63
[38] Dusenge ME, Madhavji S, Way DA. Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Global Change Biology, 2020, 26: 3639-3657
[39] Togashi HF, Prentice IC, Atkin OK, et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences, 2018, 15: 3461-3474
[40] Onoda Y, Wright IJ, Evans JR, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214: 1447-1463
[41] 刘梅朔, 王传宽, 全先奎. 兴安落叶松叶光合与氮代谢对环境变化响应的转录组分析. 应用生态学报, 2022, 33(4): 957-962 |