[1] 何容, 汪家社, 施政, 等. 武夷山植被带土壤微生物量沿海拔梯度的变化. 生态学报, 2009, 29(9): 5138-5144 [He R,Wang J-S, Shi Z, et al. Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China. Acta Ecologica Sinica, 2009, 29(9): 5138-5144] [2] 戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究. 土壤学报, 2017, 54(3): 735-748 [Dai Y-T, Yan Z-J, Xie J-H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing. Acta Pedologica Sinica, 2017, 54(3): 735-748] [3] 王静娅, 王明亮, 张凤华, 等. 干旱区典型盐生植物群落下土壤微生物群落特征. 生态学报, 2016, 36(8): 2363-2372 [Wang J-Y, Wang M-L, Zhang F-H, et al. Soil microbial properties under typical halophytic vegetation communities in arid regions. Acta Ecologica Sinica, 2016, 36(8): 2363-2372] [4] Deng Q, Cheng X, Hui D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in Central China. Science of the Total Environment, 2016, 541: 230-237 [5] Riah AW, Trinsoutrot GI, Martin LF, et al. Soil microbial community structure and function relationships: A heat stress experiment. Applied Soil Ecology, 2015, 86: 121-130 [6] Young IM. Crawford JM. interactions and self-organization in the soil-microbe complex. Science, 2004, 304: 1634-1637 [7] Hang X, Han X. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. Journal of Environmental Sciences, 2012, 24: 1483-1491 [8] 江玉梅, 谢晶, 曹广泮, 等. 江西退化红壤人工重建森林土壤微生物碳源代谢功能研究. 土壤学报, 2014, 51(1): 158-165 [Jiang Y-M,Xie J,Cao G-P, et al. Metabolic function of soil microbe to carbon sources under established forests on degraded red soil in Jiangxi Province. Acta Pedologica Sinica, 2014, 51(1): 158-165] [9] 闫冰, 肖能文, 齐月, 等. 北京城市发展对土壤微生物群落功能多样性的影响. 环境科学研究, 2016, 29(9): 1325-1335 [Yan B, Xiao N-W, Qi Y, et al. Effects of urban development on soil microbial functional diversity in Beijing. The Research of Environmental Sciences, 2016, 29(9): 1325-1335] [10] 李佩擎, 方向民, 陈伏生, 等. 南昌城乡梯度绿地土壤水溶性有机碳变异及其对温度的响应特征. 应用生态学报, 2015, 26(11): 3398-3404 [Li P-Q, Fang X-M, Chen F-S, et al. Variability of soil water soluble organic carbon content and its response to temperature change in green spaces along urban-to-rural gradient of Nanchang, China. Chinese Journal of Applied Ecology, 2015, 26(11): 3398-3404] [11] Hutyra LR, Yoon B, Alberti M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Sattle, WA region. Global Cange Bology, 2011, 17: 783-797 [12] Li P, Yang YH, Han WX, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 2014, 23: 979-987 [13] 张丹丹, 李婧, 郭琪, 等. 氮添加对杉木人工林土壤氮有效性、溶解性有机氮和酸化的影响. 西北农林科技大学:自然科学版, 2019, 47(12): 77-85 [Zhang D-D, Li Q, Guo Q, et al. Effects of nitrogen addition on soil nitrogen availability, dissolved organic nitrogen and acidification in a Chinese fir plantation. Journal of Northwest A&F University: Natural Science, 2019, 47(12): 77-85] [14] Wu J, Joergensen RG, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation extraction: An automated procedure. Soil Biology and Biochemistry, 1990, 22: 1167-l169 [15] Shen SM, Pruden G, Jenkinson DS. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of the biomass nitrogen. Soil Biology & Biochemistry, 1984, 16: 437-444 [16] Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57: 2351-2359 [17] Kong WD, Zhu YG, Fu BJ, et al. The veterinary antibio-tic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution, 2006, 143: 129-137 [18] 王晶晶, 樊伟, 崔珺, 等. 氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响. 生态学报, 2017, 37(24): 8361-8373 [Wang J-J, Fan W, Cui J, et al. Effects of nitrogen and phosphorus addition on soil microbial community characteristics in a subtropical evergreen broadleaved forest. Acta Ecologica Sinica, 2017, 37(24): 8361-8373] [19] 杨赛, 朱琳, 魏巍. 土壤生态系统硝化微生物研究进展. 中国土壤与肥料, 2018(6): 7-16 [Yang S, Zhu L, Wei W. Research progress on nitrifying microorganisms of soil ecosystem. Soil and Fertilizer Sciences in China, 2018(6): 7-16] [20] 马志良, 赵文强, 刘美, 等. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响. 应用生态学报, 2019, 30(6): 1893-1900 [Ma Z-L, Zhao W-Q, Liu M, et al. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem. Chinese Journal of Applied Ecology, 2019, 30(6): 1893-1900] [21] Zhang ZJ, Qu YY, Li SZ, et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports, 2017, 7, doi: 10.1038/s41598-017-05260-w [22] Paul EA, Clark FE. Soil Microbiology and Biochemistry. San Diego, CA, USA: Academic Press, 1996 [23] Rocha SMB, Antunes JEL, De Araujo FF, et al. Soil microbial C:N:P ratio across physiognomies of Brazilian Cerrado. Anais da academia brasileira de ciencias, 2019, 91, doi: org/10.1590/0001-3765201920190049 [24] Kuramae EE, Yergeau E, Wong LC, et al. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology, 2012, 79: 12-24 [25] 邓娇娇, 朱文旭, 周永斌, 等. 不同土地利用模式对辽东山区土壤微生物群落多样性的影响. 应用生态学报, 2018, 29(7): 2269-2276 [Deng J-J, Zhu W-X, Zhou Y-B, et al. Effects of different land use patterns on the soil microbial community diversity in montane region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 2018, 29(7): 2269-2276] [26] 江聪, 税伟, 简小枚, 等. 紫茎泽兰入侵下喀斯特退化天坑的土壤微生物群落特征. 应用生态学报, 2019, 30(6): 2002-2010 [Jiang C, Shui W, Jian X-M, et al. Soil microbial community characteristics in degraded karst tiankeng invaded by Eupatorium adenophorum. Chinese Journal of Applied Ecology, 2019, 30(6): 2002-2010] [27] 李森森, 马大龙, 臧淑英, 等. 不同干扰方式下松江湿地土壤微生物群落结构和功能特征. 生态学报, 2018, 38(22): 7979-7989 [Li S-S, Ma D-L, Zang S-Y, et al. Structural and functional characteristics of soil microbial community in the Songjiang wetland under different interferences. Acta Ecologica Sinica, 2018, 38(22): 7979-7989] [28] Rao P, Hutyra LR, Raciti SM, et al. Atmospheric nitrogen inputs and losses along an urbanization gradient from Boston to Harvard forest, MA. Biogeochemistry, 2014, 121: 229-245 [29] Entwistle EM, Zak DR, Argiro WA, et al. Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecological Monographs, 2018, 88: 225-244 [30] Berrocal MM, Rodriguez J, Ball AS, et al. Solubilisation and mineralisation of [14C] lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid-state fermentation. Applied Microbiology & Biotechnology, 1997, 48: 379-384 [31] DeForest JL, Zak DR, Pregitzer KS, et al. Atmospheric nitrate deposition and enhanced dissolved organic carbon leaching: Test of a potential. Soil Science Society of America Journal, 2005, 69:1233-1237 [32] 程淑兰, 方华军, 徐梦, 等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展. 生态学报, 2018, 38(23): 8285-8295 [Cheng S-L, Fang H-J, Xu M, et al. Regulation of plant-soil- microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review. Acta Ecologica Sinica, 2018, 38(23): 8285-8295] [33] Midgley MG, Phillips RP. Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology, 2016, 97: 3369-3378 [34] 王珊. 某排污河沿线十壤中酚类化合物的测定及其植物毒性研究. 硕士论文. 乌鲁木齐: 新疆大学, 2014 [Wang S. Occurrence of Phonels in Soils along a Receiving Stream and the Evaluation of Phytotoxicity of Chemicals. Master Thesis. Urmuqi: Xinjiang University, 2014] [35] Brackin R, Robinson N, Lakashmanan P, et al. Microbial function in adjacent subtropical forest and agricultural soil. Soil Biology & Biochemistry, 2013, 57: 68-77 [36] Nayyar A, Hamel C, Lafond G, et al. Soil microbial quality associated with yield reduction in continuous-pea. Applied Soil Ecology, 2009, 43: 115-121 [37] Zheng Q, Hu YT, Zhang SS, et al. Soil multifunctiona-lity is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136, doi: org/10.1016/j.soilbio.2019.107521 [38] Huang J, Zhang W, Mo J, et al. Urbanization in China drives soil acidification of Pinus massoniana forests. Scientific Report, 2015, 5: 13512 |