应用生态学报 ›› 2021, Vol. 32 ›› Issue (2): 701-710.doi: 10.13287/j.1001-9332.202102.029
陈龙斌1, 孙昆1,2, 张旭1, 孙洪刚1*, 姜景民1
收稿日期:
2020-08-11
接受日期:
2020-11-09
出版日期:
2021-02-15
发布日期:
2021-08-15
通讯作者:
*E-mail: honggangsun@caf.ac.cn
作者简介:
陈龙斌, 1995年生, 硕士研究生。主要从事天然林更新研究。E-mail: clb0302@163.com
基金资助:
CHEN Long-bin1, SUN Kun1,2, ZHANG Xu1, SUN Hong-gang1*, JIANG Jing-min1
Received:
2020-08-11
Accepted:
2020-11-09
Online:
2021-02-15
Published:
2021-08-15
Contact:
*E-mail: honggangsun@caf.ac.cn
Supported by:
摘要: 林隙干扰通过改变森林微生境异质性和群落演替进程,对森林物种组成、林分结构和系统功能产生重要影响。本研究评述了有关林隙干扰对森林生态系统影响的最新研究进展,从物种生物学特性和环境因素两个方面分析了林隙干扰对森林物种组成变化的影响规律,基于群落组件和群落架构阐述了林隙干扰对森林结构的作用关系,梳理了林隙干扰对森林生态系统功能的影响机制。基于已有研究的分析和目前森林生态系统经营亟需解决的问题,提出未来研究所需关注的重点领域和问题: 林隙面积阈值确定方法;林隙闭合机制;林隙干扰对森林生态系统过程的影响;林隙干扰与森林生产力的关系。林隙干扰在促进物种更新和提升森林结构复杂性等方面具有优势,因此本研究可为我国低产低效人工林改造提供科学依据。
陈龙斌, 孙昆, 张旭, 孙洪刚, 姜景民. 林隙干扰对森林生态系统的影响[J]. 应用生态学报, 2021, 32(2): 701-710.
CHEN Long-bin, SUN Kun, ZHANG Xu, SUN Hong-gang, JIANG Jing-min. Effects of forest gap disturbance on forest ecosystem[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 701-710.
[1] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营. 生态学报, 2018, 38(1): 1-10 [Liu S-R, Yang Y-J, Wang H. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services. Acta Ecologica Sinica, 2018, 38(1): 1-10] [2] Zhu CY, Zhu JJ, Wang GG, et al. Dynamics of gaps and large openings in a secondary forest of Northeast China over 50 years. Annals of Forest Science, 2019, 76: 72 [3] Gálhidy L, Mihók B, Hagyó A, et al. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecology, 2006, 183: 133-145 [4] Watt A. Pattern and process in the plant community. Journal of Ecology, 1947, 35: 1-22 [5] Runkle JR. Gap regeneration in some old-growth forests of the eastern United States. Ecology, 1981, 62: 1041-1051 [6] Hart JL. Gap-scale disturbances in central hardwood forests with implications for management// Greenberg CH, Collins BS, eds. Natural Disturbances and Historic Range of Variation: Type, Frequency, Severity, and Post-disturbance Structure in Central Hardwood Forests. Cham, the Switzerland: Springer International Publi-shing, 2016: 33-47 [7] Brokaw NVL. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica, 1982, 14: 158 [8] Taylor SO, Lorimer CG. Loss of oak dominance in dry-mesic deciduous forests predicted by gap capture methods. Plant Ecology, 2003, 167: 71-88 [9] Zhu J, Zhang G, Wang GG, et al. On the size of forest gaps: Can their lower and upper limits be objectively defined? Agricultural and Forest Meteorology, 2015, 213: 64-76 [10] Goulamoussène Y, Bedeau C, Descroix L, et al. Environmental control of natural gap size distribution in tropical forests. Biogeosciences, 2017, 14: 353-364 [11] He Z, Wang L, Jiang L, et al. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China. Forests, 2019, 10: 90 [12] Goodbody TRH, Tompalski P, Coops NC, et al. Unco-vering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest. Scientific Reports, 2020, 10: 6069 [13] Wu Q, Wu F, Yang W, et al. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet plateau. PLoS One, 2014, 9(5): e97112 [14] Kathke S, Bruelheide H. Gap dynamics in a near-natural spruce forest at Mt. Brocken, Germany. Forest Ecology and Management, 2010, 259: 624-632 [15] Mallik AU, Kreutzweiser DP, Spalvieri CM, et al. Understory plant community resilience to partial harvesting in riparian buffers of central Canadian boreal forests. Forest Ecology and Management, 2013, 289: 209-218 [16] 张希彪, 王瑞娟, 周天林, 等. 黄土丘陵区油松天然次生林林窗特征与更新动态. 应用生态学报, 2008, 19(10): 2103-2108 [Zhang X-B, Wang R-J, Zhou T-L, et al. Gap features and renewal dynamics in secon-dary natural Pinus tabuliformis forest in hilly loess region. Chinese Journal of Applied Ecology, 2008, 19(10): 2103-2108] [17] 管云云, 费菲, 关庆伟, 等. 林窗生态学研究进展. 林业科学, 2016, 52(4): 91-99 [Guan Y-Y, Fei F, Guan Q-W, et al. Advances in studies of forest gap eco-logy. Scientia Silvae Sinicae, 2016, 52(4): 91-99] [18] Hart J, Kleinman J. What are intermediate-severity forest disturbances and why are they important? Forests, 2018, 9: 579 [19] Schneider E, Larson A. Spatial aspects of structural complexity in Sitka spruce-western hemlock forests, including evaluation of a new canopy gap delineation method. Canadian Journal of Forest Research, 2017, 47: 1033-1044 [20] 刘金福, 洪伟, 李俊清, 等. 格氏栲群落林窗边缘效应研究. 应用生态学报, 2003, 14(9): 1421-1426 [Liu J-F, Hong W, Li J-Q, et al. Gap edge effect of Castanopsis kawakamii community. Chinese Journal of Applied Ecology, 2003, 14(9): 1421-1426] [21] Kern CC, Burton JI, Raymond P, et al. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America. Forestry, 2017, 90: 4-17 [22] Zenner EK, Sagheb-Talebi K, Akhavan R, et al. Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (Fagus orientalis Lipsky.) forests at the multi-gap scale. Forest Ecology and Mana-gement, 2015, 335: 26-36 [23] 杜有新, 刘伟, 王军峰, 等. 采伐林窗对白云山3种人工林林下植物多样性的早期影响. 应用生态学报, 2018, 29(7): 2121-2128 [Du Y-X, Liu W, Wang J-F, et al. Early effects of forest harvesting gap on understory plant diversity of three different plantations in Baiyun Mountain, China. Chinese Journal of Applied Ecology, 2018, 29(7): 2121-2128] [24] Forrester JA, Lorimer CG, Dyer JH, et al. Response of tree regeneration to experimental gap creation and deer herbivory in north temperate forests. Forest Ecology and Management, 2014, 329: 137-147 [25] Malcolm DC, Mason WL, Clarke GC. The transformation of conifer forests in Britain: Regeneration, gap size and silvicultural systems. Forest Ecology and Management, 2001, 151: 7-23 [26] Hubbell SP. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 1999, 283: 554-557 [27] Platt WJ, Strong DR. Special feature: Gaps in forest ecology. Ecology, 1989, 70: 535 [28] Barkman JJ. A new method to determine some characters of vegetation structure. Vegetatio, 1988, 78: 81-90 [29] 柴永福, 岳明. 植物群落构建机制研究进展. 生态学报, 2016, 36(15): 4557-4572 [Chai Y-F, Yue M. Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 2016, 36(15): 4557-4572] [30] Tor-Ngern P, Oren R, Ward EJ, et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytologist, 2015, 205: 518-525 [31] 马莉薇, 张文辉, 薛瑶芹, 等. 秦岭北坡不同生境栓皮栎实生苗生长及其影响因素. 生态学报, 2010, 30(23): 6512-6520 [Ma L-W, Zhang W-H, Xue Y-Q, et al. Growth characteristics and influencing factors of Quercus variabilis seedlings on the north slope of Qinling Mountains. Acta Ecologica Sinica, 2010, 30(23): 6512-6520] [32] Sharma A, Bohn KK, Mckeithen J, et al. Effects of conversion harvests on light regimes in a southern pine ecosystem in transition from intensively managed plantations to uneven-aged stands. Forest Ecology and Mana-gement, 2019, 432: 140-149 [33] Sevillano I, Short I, Grant J, et al. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. Forest Ecology and Management, 2016, 374: 11-19 [34] Lu D, Wang GG, Yan Q, et al. Effects of gap size and within-gap position on seedling growth and biomass allocation: Is the gap partitioning hypothesis applicable to the temperate secondary forest ecosystems in Northeast China? Forest Ecology and Management, 2018, 429: 351-362 [35] He Z, Liu J, Wu C, et al. Effects of forest gaps on some microclimate variables in Castanopsis kawakamii natural forest. Journal of Mountain Science, 2012, 9: 706-714 [36] Yan Q, Zhu J, Zhang J, et al. Spatial distribution pattern of soil seed bank in canopy gaps of various sizes in temperate secondary forests, Northeast China. Plant and Soil, 2010, 329: 469-480 [37] Wang J, Yan Q, Yan T, et al. Rodent-mediated seed dispersal of Juglans mandshurica regulated by gap size and within-gap position in larch plantations: Implication for converting pure larch plantations into larch-walnut mixed forests. Forest Ecology and Management, 2017, 404: 205-213 [38] Felton A, Felton AM, Wood J, et al. Vegetation structure, phenology, and regeneration in the natural and anthropogenic tree-fall gaps of a reduced-impact logged subtropical Bolivian forest. Forest Ecology and Management, 2006, 235: 186-193 [39] Alexander HD, Mack MC. Gap regeneration within mature deciduous forests of Interior Alaska: Implications for future forest change. Forest Ecology and Management, 2017, 396: 35-43 [40] Hart JL, Grissino-Mayer HD. Vegetation patterns and dendroecology of a mixed hardwood forest on the Cumberland Plateau: Implications for stand development. Forest Ecology and Management, 2008, 255: 1960-1975 [41] Bayer D, Pretzsch H. Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation-evidence by repeated 3D TLS measurements. Silva Fennica, 2017, 51: 1-20 [42] Richards JD, Hart JL. Canopy gap dynamics and deve-lopment patterns in secondary Quercus stands on the Cumberland Plateau, Alabama, USA. Forest Ecology and Management, 2011, 262: 2229-2239 [43] Brokaw N, Busing RT. Niche versus chance and tree diversity in forest gaps. Trends in Ecology & Evolution, 2000, 15: 183-188 [44] Schliemann SA, Bockheim JG. Methods for studying treefall gaps: A review. Forest Ecology and Management, 2011, 261: 1143-1151 [45] Sapkota IP, Odén PC. Gap characteristics and their effects on regeneration, dominance and early growth of woody species. Journal of Plant Ecology, 2009, 2: 21-29 [46] Canham CD, Denslow JS, Platt WJ, et al. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research, 1990, 20: 620-631 [47] 刘文杰, 李庆军, 张光明, 等. 西双版纳望天树林林窗小气候特征研究. 植物生态学报, 2000, 24(3): 356-361 [Liu W-J, Li Q-J, Zhang G-M, et al. Microclimatic characteristics of canopy gaps in Shorea chinensis forest in Xishuangbanna. Acta Phytoecologica Sinica, 2000, 24(3): 356-361] [48] 李猛, 段文标, 陈立新. 红松阔叶混交林林隙光量子通量密度、气温和空气相对湿度的时空分布格局. 应用生态学报, 2009, 20(12): 2853-2860 [Li M, Duan W-B, Chen L-X. Spatiotemporal distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing’an Mountains. Chinese Journal of Applied Ecology, 2009, 20(12): 2853-2860] [49] Beaudet M, Messier C, Leduc A. Understorey light profiles in temperate deciduous forests: Recovery process following selection cutting. Journal of Ecology, 2004, 92: 328-338 [50] 段文标, 郭绮雯, 陈立新, 等. 阔叶红松混交林不同大小林隙地表温度和浅层土壤温度的时空异质性. 北京林业大学学报, 2019, 41(9): 108-121 [Duan W-B, Guo Q-W, Chen L-X, et al. Heterogeneity of soil surface temperature and shallow soil temperature in different size gaps of broadleaved Pinus koraiensis forest. Journal of Beijing Forestry University, 2019, 41(9): 108-121] [51] Gray AN, Spies TA, Easter MJ. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Canadian Journal of Forest Research, 2002, 32: 332-343 [52] Brown N. The implications of climate and gap microclimate for seedling growth conditions in a Bornean lowland rain forest. Journal of Tropical Ecology, 1993, 9: 153-168 [53] Moore MR, Vankat JL. Responses of the herb layer to the gap dynamics of a mature beech-maple forest. American Midland Naturalist, 1986, 115: 336 [54] 宋新章, 肖文发. 林隙微生境及更新研究进展. 林业科学, 2006, 42(5): 114-119 [Song X-Z, Xiao W-F. Research advances of microsites and regeneration within canopy gap. Scientia Silvae Sinicae, 2006, 42(5): 114-119] [55] 李猛, 段文标, 陈立新, 等. 红松阔叶混交林林隙土壤水分分布格局的地统计学分析. 生态学报, 2012, 32(5): 1396-1402 [Li M, Duan W-B, Chen L-X, et al. Geostatistical analysis on spatiotemporal distribution pattern of soil water content of forest gap in Pinus koraiensis dominated broadleaved mixed forest. Acta Ecologica Sinica, 2012, 32(5): 1396-1402] [56] 段文标. 阔叶红松林林隙土壤水分微环境变异特征分析. 自然资源学报, 2009, 24(5): 809-815 [Duan W-B. The microenvironmental heterogeneity of soil moisture in a broad-leaved Pinus korariensis forest gap. Journal of Natural Resources, 2009, 24(5): 809-815] [57] Ostertag R. Belowground effects of canopy gaps in a tropical wet forest. Ecology, 1998, 79: 1294-1304 [58] 陈灿, 江灿, 范海兰, 等. 凋落物去除/保留对杉木人工林林窗和林内土壤呼吸的影响. 生态学报, 2017, 37(1): 102-109 [Chen C, Jiang C, Fan H-L, et al. Effects of removing/keeping litter on soil respiration in and outside the gaps in Chinese fir plantation. Acta Ecologica Sinica, 2017, 37(1): 102-109] [59] Muscolo A, Bagnato S, Sidari M, et al. A review of the roles of forest canopy gaps. Journal of Forestry Research, 2014, 25: 725-736 [60] Scharenbroch BC, Bockheim JG. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant and Soil, 2007, 294: 219-233 [61] Zhang Q, Liang Y. Effects of gap size on nutrient release from plant litter decomposition in a natural forest ecosystem. Canadian Journal of Forest Research, 1995, 25: 1627-1638 [62] Ritter E. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biology and Biochemistry, 2005, 37: 1237-1247 [63] Muscolo A, Sidari M, Mercurio R. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. Forest Ecology and Management, 2007, 242: 412-418 [64] Worrall JJ, Lee TD, Harrington TC. Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA. Journal of Ecology, 2005, 93: 178-190 [65] Hartshorn GS. Neotropical forest dynamics. Biotropica, 1980, 12: 23 [66] Millington JDA, Walters MB, Matonis MS, et al. Filling the gap: A compositional gap regeneration model for managed northern hardwood forests. Ecological Modelling, 2013, 253: 17-27 [67] Gray AN, Spies TA, Pabst RJ. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. Forest Eco-logy and Management, 2012, 281: 111-120 [68] Zhang T, Yan Q, Wang J, et al. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. Forest Ecology and Management, 2018, 429: 267-277 [69] Montgomery RA, Reich PB, Palik BJ. Untangling positive and negative biotic interactions: Views from above and below ground in a forest ecosystem. Ecology, 2010, 91: 3641-3655 [70] Walters MB, Willis JL, Gottschalk KW. Seedling growth responses to light and mineral N form are predicted by species ecologies and can help explain tree diversity. Canadian Journal of Forest Research, 2014, 44: 1356-1368 [71] Jin Y, Russo SE, Yu M. Effects of light and topography on regeneration and coexistence of evergreen and deci-duous tree species in a Chinese subtropical forest. Journal of Ecology, 2018, 106: 1634-1645 [72] Annighöfer P. Stress relief through gap creation? Growth response of a shade tolerant species (Fagus sylvatica L.) to a changed light environment. Forest Ecology and Management, 2018, 415-416: 139-147 [73] Orman O, Dobrowolska D, Szwagrzyk J. Gap regeneration patterns in Carpathian old-growth mixed beech forests: Interactive effects of spruce bark beetle canopy disturbance and deer herbivory. Forest Ecology and Management, 2018, 430: 451-459 [74] Sharma LN, Shrestha KB, Måren IE. Tree regeneration in gap-understory mosaics in a subtropical Shorea robusta (Sal) forest. Journal of Forestry Research, 2019, 30: 2061-2068 [75] Lu D, Zhang G, Zhu J, et al. Early natural regeneration patterns of woody species within gaps in a temperate secondary forest. European Journal of Forest Research, 2019, 138: 991-1003 [76] 贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布. 应用生态学报, 2020, 31(6): 1916-1922 [He D-N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China. Chinese Journal of Applied Ecology, 2020, 31(6): 1916-1922] |
[1] | 谢京瑾, 许秋月, 何敏, 夏允, 范跃新, 杨柳明. 中亚热带森林更新方式对土壤团聚体磷组分的影响 [J]. 应用生态学报, 2024, 35(2): 330-338. |
[2] | 蔡露露, 孙守家, 施光耀, 杜灵通, 倪细炉, 张劲松, 孟平. 自然状态下栓皮栎林空气负离子与PM2.5的关系 [J]. 应用生态学报, 2024, 35(2): 347-353. |
[3] | 赵怡, 李福明, 朱景康, 常晨隆, 冯泳翰, 梁文俊, 魏曦. 华北落叶松人工林林隙大小对其更新的影响 [J]. 应用生态学报, 2023, 34(8): 2039-2046. |
[4] | 黄睿智, 王奇, 孙婧依, 杨绍微, 赵倚霈, 刘建锋, 肖文发. 太白山南北坡栎类林物种组成与群落特征比较 [J]. 应用生态学报, 2023, 34(8): 2055-2064. |
[5] | 黄庆阳, 谢立红, 曹宏杰, 王立民, 杨帆, 王继丰, 刘赢男, 倪红伟. 细菌对五大连池火山森林凋落物早期分解的影响 [J]. 应用生态学报, 2023, 34(7): 1941-1948. |
[6] | 赵亮, 杨治春, 周卷华, 王国强, 尹秋龙, 赵锦, 齐光, 原作强. 秦岭北麓典型栓皮栎天然次生林群落结构与物种组成 [J]. 应用生态学报, 2023, 34(12): 3214-3222. |
[7] | 郭香瑶, 罗颖, 尹秋龙, 杨治春, 贾仕宏, 郝占庆. 秦岭皇冠暖温带落叶阔叶林灌木层结构与物种多样性 [J]. 应用生态学报, 2022, 33(8): 2017-2026. |
[8] | 宋鸽, 王全成, 郑勇, 贺纪正. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展 [J]. 应用生态学报, 2022, 33(6): 1709-1718. |
[9] | 侯雅琳, 韩广轩, 朱连奇, 李新鸽, 周英锋, 许景伟. 模拟降雨量变化对黄河三角洲湿地植物群落特征的影响 [J]. 应用生态学报, 2022, 33(5): 1260-1266. |
[10] | 张洋洋, 周清慧, 许骄阳, 陈继豪, 魏鸣, 何伟, 王鹏程, 晏召贵. 林分密度对马尾松林下植物与土壤种子库多样性的影响 [J]. 应用生态学报, 2021, 32(7): 2355-2362. |
[11] | 康虎虎, 刘晓宏, 张馨予, 郭军明, 吴国菊, 徐国保, 康世昌. 树木年轮汞记录: 进展、问题和展望 [J]. 应用生态学报, 2021, 32(10): 3733-3742. |
[12] | 郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应 [J]. 应用生态学报, 2020, 31(7): 2464-2472. |
[13] | 贺丹妮, 杨华, 温静, 谢榕. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布 [J]. 应用生态学报, 2020, 31(6): 1916-1922. |
[14] | 尉文, 闫琰, 刘晓云, 张硕新. 太白山锐齿栎林群落结构特征 [J]. 应用生态学报, 2020, 31(6): 1923-1932. |
[15] | 孙颖, 高颖, 陈惠, 司友涛, 鲍勇, 焦宏哲. 亚热带米槠林不同更新方式对土壤可溶性有机质降解性的影响 [J]. 应用生态学报, 2020, 31(4): 1073-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||