[1] Cavender-Bares J. Diversity, distribution and ecosystem services of the North American Oaks. International Oaks, 2016, 27: 37-48 [2] 郝倩, 刘鸿雁, 程颖, 等. 中国落叶栎类末次冰盛期避难所及冰后期分布变化. 中国科学: 地球科学, 2023, 53(1): 82-95 [3] IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2018 [4] O'Connell CS, Ruan L, Silver WL. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature Communications, 2018, 9: 1348 [5] Lewis SL, Wheeler CE, Mitchard ETA, et al. Restoring natural forests is the best way to remove atmospheric carbon. Nature, 2019, 568: 25-28 [6] Sun S, Zhang Y, Huang D, et al. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment, 2020, 744: 140786 [7] Feurdean A, Grindean R, Florescu G, et al. The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000 years of vegetation and land use dynamics. Biogeosciences, 2021, 18: 1081-1103 [8] 张维伟, 薛文艳, 杨斌, 等. 桥山栎林群落结构特征与物种多样性相关关系分析. 生态学报, 2019, 39(11): 3991-4001 [9] 戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应. 应用生态学报, 2015, 26(7): 1921-1927 [10] Curtis JT, McIntosh RP. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 1951, 32: 476-496 [11] Cardinale BJ, Duffy JE, Gonzalez A, et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486: 59-67 [12] 岳明. 秦岭植物垂直带谱完整复杂. 森林与人类, 2015(2): 76-81 [13] 郭香瑶, 罗颖, 尹秋龙, 等. 秦岭皇冠暖温带落叶阔叶林灌木层结构与物种多样性. 应用生态学报, 33(8): 2017-2026 [14] 雷明德. 陕西植被. 北京: 科学出版社, 1999 [15] 张百平, 姚永慧. 山体效应研究. 北京: 中国环境科学出版社, 2015 [16] 张百平, 姚永慧, 肖飞, 等. 秦岭中部山地落叶阔叶林超级垂直带的发现与意义. 地理学报, 2022, 77(9): 2236-2248 [17] Chan SF, Shi WK, Chang AY, et al. Contrasting forms of competition set elevational range limits of species. Ecology Letters, 2019, 22: 1668-1679 [18] Paquette A, Hargreaves AL, Ghalambor G. Biotic interactions are more often important at species' warm versus cool range edges. Ecology Letters, 2021, 24: 2427-2438 [19] Lyu SM, Alexander JM. Competition contributes to both warm and cool range edges. Nature Communications, 2022, 13: 2502 [20] 邓清月, 张晓龙, 牛俊杰, 等. 晋西北饮马池山植物群落物种多样性沿海拔梯度的变化. 生态环境学报, 2019, 28(5): 865-872 [21] 何斌, 李青, 陈群利, 等. 黔西北黄杉群落物种多样性的海拔梯度格局. 生态环境学报, 2021, 30(6): 1111-1120 [22] 朱云云, 王孝安, 王贤, 等. 坡向因子对黄土高原草地群落功能多样性的影响. 生态学报, 2016, 36(21): 6823-6833 [23] 沈泽昊, 张新时, 金义兴. 三峡大老岭森林物种多样性的空间格局分析及其地形解释. 植物学报, 2000, 42(6): 620-627 [24] Nepali BR, Skartveit J, Baniva CB. Impacts of slope aspects on altitudinal species richness and species composition of Narapani-Masina landscape, Arghakhanchi, West Nepal. Journal of Asia-Pacific Biodiversity, 2021, 14(3): 415-424 [25] Maren IE, Karki S, Prajapati C, et al. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? Journal of Arid Environments, 2015, 121: 112-123 [26] Huang ZH, Liu NF, Zhou TL. A comparative study of genetic diversity of peripheral and central populations of chukar partridge from Northwestern China. Biochemical Genetics, 2005, 43: 613-621 [27] Johannesson K, André C. Life on the margin: Genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology, 2016, 15: 2013-2029 [28] 章伟, 李永权, 汪惠峰, 等. 安徽羽叶报春核心和边缘居群的形态变异比较研究. 热带亚热带植物学报, 2018, 26(3): 285-292 [29] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548 [30] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究. Ⅱ. 丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15(3): 268-277 [31] Whittaker RH. Evolution of measurement of species diversity. Taxon, 1972, 21: 213-251 [32] Magurran AE. Ecological Diversity and Its Measurement. New Jersey, USA: Princeton University Press, 1988 [33] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000 [34] Wang T, Wang G, Innes JL, et al. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4: 448-458 [35] 李文英, 王冰, 黎祜琛. 栎类树种的生态效益和经济价值及其资源保护对策. 林业科技通讯, 2001(8): 13-15 [36] 李想, 刘万生, 周玮, 等. 蒙古栎次生林群落结构及优势种群点格局分析. 植物研究, 2020, 40(6): 830-838 [37] 叶永忠, 翁梅, 杨修. 伏牛山栎类群落多样性研究. 植物学通报, 1995, 12(增刊2): 79-84 [38] 吴二焕, 李东海, 杨小波, 等. 海南苏铁种群结构与森林群落郁闭度的关系. 生物多样性, 2021, 29(11): 1461-1469 [39] 何婷. 不同地区辽东栎不同器官单宁含量研究. 硕士论文. 陕西杨凌: 西北农林科技大学, 2015 [40] Darwin CR. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, 1859 [41] Case TJ, Taper ML. Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. The American Naturalist, 2000, 155: 583-605 [42] 张新新, 王茜, 胡颖, 等. 植物边缘种群遗传多样性研究进展. 植物生态学报, 2019, 43(5): 383-395 [43] Kimmins JP. Forestry Ecology: A Foundation for Sustainable Forest Management and Environmental Ethics in Forestry. 3rd Ed. Upper Saddle River, NJ, USA: Pearson Education, 2004, [44] Jump AS, Woodward FI. Seed production and population density decline approaching the range-edge of Cirsium species. New Phytologist, 2003, 160: 349-358 [45] Abeli T, Gentili R, Mondoni A, et al. Effects of marginality on plant population performance. Journal of Biogeography, 2014, 41: 239-249 [46] 彭潔莹, 谢缘铭, 刘文帧, 等. 小陇山锐齿栎林木本植物物种丰富度与生产力关系研究. 北京林业大学学报, 2021, 43(11): 11-19 [47] 赵平, 彭少麟. 种、种的多样性及退化生态系统功能的恢复和维持研究. 应用生态学报, 2001, 12(1): 132-136 [48] 郝成元, 周见. 伏牛山南、北坡植物物种多样性及其与主要生态因子的相关性. 植物资源与环境学报, 2013, 22(3): 38-44 [49] Sagarin RD, Gaines SD. The ‘abundant centre' distribution: To what extent is it a biogeographical rule? Eco-logy Letters, 2002, 5: 137-147 [50] 邹文涛, 姜艳, 尹光天, 等. 石门森林公园不同海拔或坡向林地物种多样性的比较. 中南林业科技大学学报, 2014, 34(4): 77-81 [51] 袁继池, 邱军, 蔡京勇, 等. 红椿天然群落α多样性与环境因子的关系. 森林与环境学报, 2017, 37(1): 16-21 [52] 刘开明, 郑智, 龚大洁. 物种丰富度的垂直分布格局及其形成机制. 生态学杂志, 2017, 36(2): 541-554 |