应用生态学报 ›› 2021, Vol. 32 ›› Issue (3): 825-835.doi: 10.13287/j.1001-9332.202103.008
洪小敏1, 魏强1, 李梦娇1, 余坦蔚1, 严强2, 胡亚林1*
收稿日期:
2020-09-29
接受日期:
2020-12-29
出版日期:
2021-03-15
发布日期:
2021-09-15
通讯作者:
* E-mail: huyl@iae.ac.cn
作者简介:
洪小敏, 女, 1995年生, 硕士研究生。主要从事森林碳循环研究。E-mail: hhongxm@163.com
基金资助:
HONG Xiao-min1, WEI Qiang1, LI Meng-jiao1, YU Tan-wei1, YAN Qiang2, HU Ya-lin1*
Received:
2020-09-29
Accepted:
2020-12-29
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: huyl@iae.ac.cn
Supported by:
摘要: 凋落物是森林土壤有机碳(SOC)形成、稳定和周转的重要影响因子。目前针对亚热带不同类型森林地上和地下凋落物对新SOC累积和老SOC输出动态平衡的影响仍不清楚。本研究以中亚热带常绿阔叶天然林、马尾松人工林和杉木人工林为对象,基于C3/C4植物-土壤置换试验,利用稳定同位素13C示踪方法开展3年野外定位试验,分析了森林地上、地下凋落物输入对SOC周转的影响。结果表明: 森林类型、凋落物处理和时间均能显著影响SOC含量、土壤δ13C值、新SOC和老SOC含量,且存在显著的森林类型×凋落物处理交互效应。地上和地下凋落物输入均能显著提高SOC含量和净增量,与杉木人工林相比,天然林SOC对凋落物输入的响应更敏感。凋落物输入显著降低了土壤δ13C值,且天然林、马尾松人工林土壤δ13C显著低于杉木人工林。在马尾松人工林,地下凋落物处理的新SOC含量显著高于地上凋落物;在天然林和马尾松人工林,地下凋落物输入处理的老SOC含量显著低于地上凋落物处理。此外,地上凋落物归还量和地下根生物量与SOC含量和净增量呈显著正相关,而地下根凋落物量和C/N与新SOC含量呈显著正相关。森林地下凋落物比地上凋落物输入对SOC周转的影响更重要,且不同森林凋落物输入对SOC的影响存在差异性。本研究可为揭示亚热带典型森林土壤有机碳库的形成和可持续管理提供依据。
洪小敏, 魏强, 李梦娇, 余坦蔚, 严强, 胡亚林. 亚热带典型森林地上和地下凋落物输入对土壤新老有机碳动态平衡的影响[J]. 应用生态学报, 2021, 32(3): 825-835.
HONG Xiao-min, WEI Qiang, LI Meng-jiao, YU Tan-wei, YAN Qiang, HU Ya-lin. Effects of aboveground and belowground litter inputs on the balance of soil new and old organic carbon under the typical forests in subtropical region[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 825-835.
[1] | Mckinley DC, Ryan MG, Birdsey RA, et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 2011, 21: 1902-1924 |
[2] | Dixon RK, Brown S, Houghton RA, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190 |
[3] | Schimel. Ecological controls over global soil carbon sto-rage. Bulletin of the Ecological Society of America, 1995, 76: 384-385 |
[4] | 苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展. 中国沙漠, 2002, 22(3): 19-27 [Su Y-Z, Zhao H-L. Research progress on soil organic carbon storage, influencing factors and environmental effects. Journal of Desert Research, 2002, 22(3): 19-27] |
[5] | 周国逸, 熊鑫. 土壤有机碳形成机制的探索历程. 热带亚热带植物学报, 2019, 27(5): 481-490 [Zhou G-Y, Xiong X. Exploration history of soil organic carbon formation mechanisms. Journal of Tropical and Subtropical Botany, 2019, 27(5): 481-490] |
[6] | Rasse DP, Rumpel C, Dignac MF. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 2005, 269: 341-356 |
[7] | Schmidt MWI, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 |
[8] | Fekete I, Kotroczó Z, Varga C, et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology and Biochemistry, 2014, 74: 106-114 |
[9] | Leff JW, Wieder WR, Taylor PG, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 2012, 18: 1-11 |
[10] | 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响. 土壤学报, 2020, 57(4): 954-962 [Ruan C-Y, Liu X-F, Lv M-K, et al. Effects of litter addition and removal on soil carbon and nitrogen and enzyme activities in Chinese fir plantation. Acta Pedologica Sinica, 2020, 57(4): 954-962] |
[11] | Crow SE, Lajtha K, Filley RT, et al. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Global Change Biology, 2009, 15: 2003-2019 |
[12] | 林宝平, 何宗明, 郜士垒, 等. 去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响. 生态学报, 2017, 37(12): 4061-4071 [Lin B-P, He Z-M, Gao S-L, et al. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests. Acta Ecologica Sinica, 2017, 37(12): 4061-4071] |
[13] | Hatton PJ, Castanha C, Torn MS, et al. Litter type control on soil C and N stabilization dynamics in a temperate forest. Global Change Biology, 2015, 21: 1358-1367 |
[14] | Bird JA, Torn MS. Fine roots vs. needles: A comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry, 2006, 79: 361-382 |
[15] | Mambelli S, Bird JA, Gleixner G, et al. Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Organic Geochemistry, 2011, 42: 1099-1108 |
[16] | 刁浩宇, 王安志, 袁凤辉, 等. 长白山阔叶红松林演替序列植物-凋落物-土壤碳同位素特征. 应用生态学报, 2019, 30(5): 1435-1444 [Diao H-Y, Wang A-Z, Yuan F-H, et al. Stable carbon isotopic characteristics of plant-litter-soil continuum along a successional gradient of broadleaved Korean pine forests in Changbai Mountain, China. Chinese Journal of Applied Ecology, 2019, 30(5): 1435-1444] |
[17] | 喻阳华, 程雯, 杨丹丽, 等. 黔西北次生林优势树种叶片-凋落物-土壤连续体有机质碳稳定同位素特征. 生态学报, 2018, 38(24): 8733-8740 [Yu Y-H, Cheng W, Yang D-L, et al. Carbon stable isotopic chara-cteristics of organic matter in the leaf-litter-soil conti-nuum of dominant tree species in a secondary forest in northwestern Guizhou. Acta Ecologica Sinica, 2018, 38(24): 8733-8740] |
[18] | Cheng XL, Luo YQ, Chen JQ, et al. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biology and Biochemistry, 2006, 38: 3380-3386 |
[19] | 商素云, 姜培坤, 宋照亮, 等. 亚热带不同林分土壤表层有机碳组成及其稳定性. 生态学报, 2013, 33(2): 416-424 [Shang S-Y, Jiang P-K, Song Z-L, et al. Composition and stability of organic carbon in the top soil under different forest types in subtropical China. Acta Ecologica Sinica, 2013, 33(2): 416-424] |
[20] | 刘益君, 闫文德, 伍倩, 等. 亚热带樟树人工林土壤呼吸对凋落物处理的响应. 中南林业科技大学学报, 2015, 35(4): 83-88 [Liu Y-J, Yan W-D, Wu Q, et al. Response of soil respiration to litter treatment of Cinnamomum camphora in subtropical area. Journal of Central South University of Forestry & Technology, 2015, 35(4): 83-88] |
[21] | 高强, 马明睿, 韩华, 等. 去除和添加凋落物对木荷林土壤呼吸的短期影响. 生态学杂志, 2015, 34(5): 1189-1197 [Gao Q, Ma M-R, Han H, et al. Short-term effects of aboveground litter exclusion and addition on soil respiration in a Schima superba forest in Zhejiang province, Eastern China. Chinese Journal of Ecology, 2015, 34(5): 1189-1197] |
[22] | 吴越, 马红亮, 尹云锋, 等. 凋落物去除和氮添加对亚热带阔叶林土壤不同组分碳、氮的影响. 应用生态学报, 2019, 30(9): 2923-2932 [Wu Y, Ma H-L, Yin Y-F, et al. Effects of litter removal and nitrogen addition on carbon and nitrogen in different soil fractions in a subtropical broad-leaved forest. Chinese Journal of Applied Ecology, 2019, 30(9): 2923-2932] |
[23] | Lajtha K, Townsend KL, Kramer MG, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry, 2014, 119: 341-360 |
[24] | Fang X, Zhao L, Zhou GY, et al. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 2015, 392: 139-153 |
[25] | Lajtha K, Bowden RD, Nadelhoffer K. Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal, 2014, 78: 261-269 |
[26] | Liu XF, Lin TC, Vadeboncoeur MA, et al. Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest. Plant and Soil, 2019, 444: 489-499 |
[27] | 王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 2011, 22(4): 1075-1081 [Wang Q-K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input. Chinese Journal of Applied Ecology, 2011, 22(4): 1075-1081] |
[28] | 凌华, 陈光水, 陈志勤. 中国森林凋落量的影响因素. 亚热带资源与环境学报, 2009, 4(4): 66-71 [Ling H, Chen G-S, Chen Z-Q. Controlling factors of litterfall in China’s forest. Journal of Subtropical Resources and Environment, 2009, 4(4): 66-71] |
[29] | 黄石德, 黄雍容, 高伟, 等. 沿海拔梯度武夷山3种典型森林凋落物及养分归还动态. 热带亚热带植物学报, 2020, 28(4): 394-402 [Huang S-D, Huang Y-R, Gao W, et al. Dynamics of litterfall and nutrient return in three typical forests of Wuyi Mountain along altitudinal gradient. Journal of Tropical and Subtropical Botany, 2020, 28(4): 394-402] |
[30] | 徐剑武. 莽山三种森林类型凋落物对土壤有机碳及大量养分的影响. 硕士论文. 长沙: 中南林业科技大学, 2014 [Xu J-W. Effect of Three Kinds of Forest Litter in Mangshan on Soil Organic Carbon and Macronu-trients. Master Thesis. Changsha: Central South University of Forestry & Technology, 2014] |
[31] | Cotrufo MF, Wallenstein MD, Boot CM, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19: 988-995 |
[32] | 郭忠玲, 郑金萍, 马元丹, 等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 2006, 26(4): 1037-1046 [Guo Z-L, Zheng J-P, Ma Y-D, et al. Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China. Acta Ecologica Sinica, 2006, 26(4): 1037-1046] |
[33] | 聂立凯, 于政达, 孔范龙, 等. 土壤动物对土壤碳循环的影响研究进展. 生态学杂志, 2019, 38(3): 882-890 [Nie L-K, Yu Z-D, Kong F-L, et al. Advance in study on effects of soil fauna on soil carbon cycling. Chinese Journal of Applied Ecology, 2019, 38(3): 882-890] |
[34] | González G, Seastedt TR. Soil fauna and plant litter decomposition tropical and subalpine forests. Ecology, 2001, 82: 955-964 |
[35] | Xu XK, Inubushi K, Sakamoto K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma, 2006, 136: 310-319 |
[36] | Bauhus J, Paré D, Coté L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 1998, 30: 1077-1089 |
[37] | Pisani O, Lin LH, Lun OOY, et al. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks. Biogeochemistry, 2016, 127: 1-14 |
[38] | Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 2000, 10: 412-422 |
[39] | Zhang WD, Wang SL. Effects of NH4+ and NO3- on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China. Soil Biology and Biochemistry, 2012, 47: 116-122 |
[40] | Liao JD, Boutton TW, Jastrow JD. Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biology and Biochemistry, 2006, 38: 3197-3210 |
[41] | Natelhoffer KJ, Fry B. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal, 1988, 52: 1633-1640 |
[42] | Balesden J. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology, 1993, 74: 1713-1721 |
[43] | Hontoria C, Rodríguez-Murillo JC, Saa A. Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Science Society of America Journal, 1999, 63: 614-622 |
[44] | Billings SA, Richter DD. Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia, 2006, 148: 325-333 |
[45] | Steffens C, Helfrich M, Joergensen RG, et al. Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash(Fraxinus excelsior L.) during decomposition: A laboratory incubation experiment. Soil Biology and Biochemistry, 2015, 83: 125-137 |
[46] | Xia MX, Talhelm AF, Pregitzer KS. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phyto-logist, 2015, 208: 715-726 |
[47] | Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42: 1363-1371 |
[48] | Luo ZK, Wang EL, Smith C. Fresh carbon input diffe-rentially impacts soil carbon decomposition across natural and managed systems. Ecology, 2015, 96: 2806-2813 |
[49] | Huang YH, Li YL, Xiao Y, et al. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China. Forest Ecology and Management, 2010, 261: 1170-1177 |
[50] | 魏圆云, 崔丽娟, 张曼胤, 等. 土壤有机碳矿化激发效应的微生物机制研究进展. 生态学杂志, 2019, 38(4): 1202-1211 [Wei Y-Y, Cui L-J, Zhang M-Y, et al. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization. Chinese Journal of Ecology, 2019, 38(4): 1202-1211] |
[51] | 郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题. 科学通报, 2011, 56(26): 2162-2173 [Zheng J-F, Cheng K, Pan G-X, et al. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China. Chinese Science Bulletin, 2011, 56(26): 2162-2173] |
[1] | 艾灵, 吴福忠, 樊雪波, 杨静, 吴秋霞, 朱晶晶, 倪祥银. 米槠和杉木人工林土壤酶活性和酶化学计量特征对凋落物输入的短期响应 [J]. 应用生态学报, 2024, 35(3): 631-638. |
[2] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[3] | 李佳玉, 施秀珍, 李帅军, 王振宇, 王建青, 邹秉章, 王思荣, 黄志群. 杉木人工林和天然次生林林龄对土壤酶活性的影响 [J]. 应用生态学报, 2024, 35(2): 339-346. |
[4] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[5] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[6] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[7] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[8] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[9] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[10] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
[11] | 纪永康, 马楠, 张慧, 李翠环, 马元丹, 武启骞, 李彦. 降水季节性分配对亚热带森林土壤氮矿化的影响 [J]. 应用生态学报, 2024, 35(1): 186-194. |
[12] | 吴欣阳, 邵静, 陈晓萍, 李锦隆, 胡丹丹, 钟全林, 程栋梁. 武夷山不同海拔阔叶树叶片养分含量及再吸收效率 [J]. 应用生态学报, 2023, 34(9): 2305-2313. |
[13] | 薛志婧, 屈婷婷, 刘春晖, 刘小槺, 王蕊, 王宁, 周正朝, 董治宝. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献 [J]. 应用生态学报, 2023, 34(7): 1845-1852. |
[14] | 李澳归, 蔡世锋, 罗素珍, 王小红, 曹丽荣, 王雪, 林成芳, 陈光水. 亚热带常绿阔叶林62种木本植物凋落叶碳氮磷化学计量特征 [J]. 应用生态学报, 2023, 34(5): 1153-1160. |
[15] | 吕付泽, 杨雅丽, 鲍雪莲, 张常仁, 郑甜甜, 何红波, 张旭东, 解宏图. 免耕不同秸秆覆盖量对黑土微生物群落及其残留物的影响 [J]. 应用生态学报, 2023, 34(4): 903-912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||