[1] 刘鑫, 荣晓莹, 张元明. 古尔班通古特沙漠生物土壤结皮对氨氧化微生物生态位的影响. 生物多样性, 2021, 29(1): 43-52 [2] 孙福海, 肖波, 李胜龙, 等. 黄土高原不同发育阶段生物结皮的导水和持水特征. 草业学报, 2021, 30(6): 54-63 [3] 李继文, 尹本丰, 张元明, 等. 荒漠结皮层藓类植物死亡对表层土壤水分蒸发和入渗的影响. 生态学报, 2021, 41(16): 6533-6541 [4] 王彦峰, 肖波, 王兵, 等. 黄土高原水蚀风蚀交错区藓结皮对土壤酶活性的影响. 应用生态学报, 2017, 28(11): 3553-3561 [5] Pietrasiak N, Regus JU, Johansen JR, et al. Biological soil crust community types differ in key ecological functions. Soil Biology and Biochemistry, 2013, 65: 168-171 [6] Li XR, Song G, Hui R. Precipitation and topsoil attri-butes determine the species diversity and distribution patterns of crustal communities in desert ecosystems. Plant and Soil, 2017, 420: 163-175 [7] 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 2009, 24(1): 11-24 [8] 田桂泉, 王子文. 科尔沁沙地松树山地区苔藓植物物种多样性与分布特征分析. 中国沙漠, 2011, 31(5): 1181-1188 [9] Song XT, Fang WZ, Chi XL, et al. Geographic pattern of bryophyte species richness in China: The influence of environment and evolutionary history. Frontiers in Ecology and Evolution, 2021, 9: 680318 [10] Cole HA, Newmaster SG, Bell W, et al. Influence of microhabitat on bryophyte diversity in Ontario mixedwood boreal forest. Canadian Journal of Forest Research, 2008, 38: 1867-1876 [11] 卜崇峰, 张朋, 叶菁, 等. 陕北水蚀风蚀交错区小流域苔藓结皮的空间特征及其影响因子. 自然资源学报, 2014, 29(3): 490-499 [12] 张朋, 卜崇峰, 杨永胜, 等. 基于CCA的坡面尺度生物结皮空间分布. 生态学报, 2015, 35(16): 5412-5420 [13] Caballero RE, Roman JR, Chamizo S, et al. Biocrust landscape-scale spatial distribution is strongly controlled by terrain attributes: Topographic thresholds for colonization in a semiarid badland system. Earth Surface Processes and Landforms, 2019, 44: 2771-2779 [14] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局. 生态学报, 2016, 36(2): 377-386 [15] Zhou XJ, Tan K, Li SX, et al. Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq Desert of China. Catena, 2020, 190: 104559 [16] Sun J, Li X. Role of shrubs in the community assembly of biocrusts: The biotic and abiotic influences along a biocrust succession gradient. Plant and Soil, 2021, 460: 163-176 [17] 袁方, 张振师, 卜崇峰, 等. 陕北小流域生物结皮空间分布影响因子的通径分析. 水土保持研究, 2015, 22(6): 30-41 [18] 白学良. 内蒙古苔藓植物志. 呼和浩特: 内蒙古大学出版社, 1997: 90-273 [19] 吴鹏程. 中国苔藓图鉴. 北京: 中国林业出版社, 2017: 262-400 [20] 杨丽娜, 赵允格, 明姣, 等. 黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性. 生态学报, 2013, 33(14): 4416-4424 [21] 李雯, 马昕昕, 马宁, 等. 放牧强度对黄土丘陵区生物结皮土壤化学计量学特征的影响. 草地学报, 2021, 29(11): 2547-2555 [22] 张雨虹, 张韶阳, 张树煇, 等. 毛乌素沙地苔藓结皮对沙化土壤性质和细菌群落的影响. 土壤学报, 2021, 58(6): 1585-1597 [23] 谢婷, 李云飞, 李小军, 等. 腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征. 生态学报, 2021, 41(6): 2339-2348 [24] Zhou XJ, An XL, De Philippis R, et al. The facilitative effects of shrub on induced biological soil crust development and soil properties. Applied Soil Ecology, 2019, 137: 129-138 [25] Romero ALN, Moratta MAH, Carretero EH, et al. Spatial distribution of biological soil crusts along an aridity gradient in the central-west of Argentina. Journal of Arid Environments, 2020, 176: 104099 [26] 董金伟, 李宜坪, 李新凯, 等. 毛乌素沙地植被类型对生物结皮及其下伏土壤养分的影响. 水土保持研究, 2019, 26(2): 112-117 [27] Zhang J, Liu GB, Xu M, et al. Influence of vegetation factors on biological soil crust cover on rehabilitated grassland in the Hilly Loess Plateau, China. Environmental Earth Sciences, 2013, 68: 1099-1105 [28] Bowker MA, Belnap J, Phillips DSL, et al. Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration. Ecological Applications, 2005, 15: 1941-1951 [29] Santiago S, Eldridge DJ. Dual community assembly processes in dryland biocrust communities. Functional Ecology, 2020, 34: 877-887 [30] Bowker MA, Soliveres S, Maestre FT, et al. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology, 2010, 98: 551-560 [31] 孙守琴, 王根绪, 罗辑, 等. 苔藓植物对环境变化的响应和适应性. 西北植物学报, 2009, 29(11): 2360-2365 [32] 吴玉环, 黄国宏, 高谦, 等. 苔藓植物对环境变化的响应及适应性研究进展. 应用生态学报, 2001, 12(6): 943-946 [33] Bu CF, Zhang P, Wang C, et al. Spatial distribution of biological soil crusts on the slope of the Chinese Loess Plateau based on canonical correspondence analysis. Catena, 2016, 137: 373-381 [34] Garcia V, Aranibar J, Pietrasiak N. Multiscale effects on biological soil crusts cover and spatial distribution in the Monte Desert. Acta Oecologica, 2015, 69: 35-45 [35] Wang SS, Liu BY, Zhao YG, et al. Determination of the representative elementary area (REA) of biocrusts: A case study from the Hilly Loess Plateau region, China. Geoderma, 2022, 406: 115502 [36] Ju MC, Zhang TL, Li XK, et al. Large scale environmental drivers of biocrust distribution and development across a sandy desert in China. Catena, 2021, 200: 105137 [37] 吴易雯, 饶本强, 刘永定, 等. 不同生境对人工结皮发育及表土氮、磷含量及其代谢酶活性的影响. 土壤, 2013, 45(1): 52-59 [38] Vaezi AR, Zarrinabadi E, Auerswald K, et al. Interaction of land use, slope gradient and rain sequence on runoff and soil loss from weakly aggregated semi-arid soils. Soil and Tillage Research, 2017, 172: 22-31 [39] Chaplot VAM, Bissonnais YL. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal, 2003, 67: 844-851 [40] Liu F, Zhang G, Sun L, et al. Effects of biological soil crusts on soil detachment process by overland flow in the Loess Plateau of China. Earth Surface Processes and Landforms, 2016, 41: 875-883 |