[1] 张庆乐, 唐心强, 刘卫国, 等. 有机氧同位素分馏作用研究进展. 地球与环境, 2009, 37(2): 178-181 [2] 刘贤赵, 张勇, 宿庆, 等. 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 2014, 29(12): 1341-1354 [3] 胡海英, 李惠霞, 倪彪, 等. 宁夏荒漠草原典型群落的植被特征及其优势植物的水分利用效率. 浙江大学学报: 农业与生命科学版, 2019, 45(4): 460-471 [4] Chen M, Shi ZM, Liu S, et al. Leaf functional traits have more contributions than climate to the variations of leaf stable carbon isotope of different plant functional types on the eastern Qinghai-Tibetan Plateau. Science of the Total Environment, 2023, 871: 162036 [5] Gong XY, Chen Q, Lin S, et al. Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 2011, 340: 227-238 [6] 刘万弟, 李小伟. 宁夏针茅属植物叶片碳稳定同位素特征及其影响因素. 草地学报, 2022, 30(8): 2058-2065 [7] Loader NJ, Helle G, Los SO, et al. Twentieth-century summer temperature variability in the southern Altai Mountains: A carbon and oxygen isotope study of tree-rings. Holocene, 2010, 20: 1149-1156 [8] Buajan S, Pumijumnong N, Li Q, et al. oxygen isotope (δ18O) of teak tree-rings in north-west Thailand. Journal of Tropical Forest Science, 2016, 28: 396-405 [9] Xu GB, Liu XH, Qin DH, et al. Relative humidity reconstruction for northwestern China's Altay Mountains using tree-ring δ18O. Chinese Science Bulletin, 2014, 59: 190-200 [10] Farquhar G, O'Leary M, Berry J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 1982, 9: 121-137 [11] Grams TEE, Kozovits AR, Haberle KH, et al. Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant, Cell and Environment, 2007, 30: 1023-1034 [12] Scheidegger Y, Saurer M, Bahn M, et al. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model. Oecologia, 2000, 125: 350-357 [13] 杨子颖, 李奇穗, 苏洁, 等. 青藏高原东南地区松萝科地衣的鉴定研究. 西北林学院学报, 2022, 37(5): 117-123 [14] 翁雪飞, 武振波, 徐涛, 等. 青藏高原东南缘深部地球物理探测与壳幔结构研究进展. 地球物理学进展, 2023, 38(2): 612-630 [15] 何家莉, 周天阳, 宋怡珂, 等. 青藏高原东南缘不同坡向对陇蜀杜鹃花性状的影响. 应用与环境生物学报, 2021, 27(4): 860-868 [16] 李垚, 盛基峰, 叶彦辉, 等. 林芝云杉林粗木质残体持水特性研究. 干旱区资源与环境, 2023, 37(3): 137-142 [17] 李景浩, 李慧, 魏亚伟, 等. 樟子松、油松、蒙古栎水分利用效率种间变化及其对环境因子的响应差异. 植物研究, 2016, 36(4): 581-587 [18] Wang X, Chen G, Wu MQ, et al. Differences in the patterns and mechanisms of leaf and ecosystem-scale water use efficiencies on the Qinghai-Tibet Plateau. Catena, 2023, 222: 106874 [19] Feng XH. Long-term Ci/Ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. Oecologia, 1998, 117: 19-25 [20] Belmecheri S, Lavergne A. Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 2020, 63: 125748 [21] Wang J, Wen XF, Lyu S, et al. Soil properties mediate ecosystem intrinsic water use efficiency and stomatal conductance via taxonomic diversity and leaf economic spectrum. Science of the Total Environment, 2021, 783: 146968 [22] Ma WT, Tcherkez G, Wang XM, et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytologist, 2021, 229: 1326-1338 [23] Li MY, Yao JQ, Guan JY, et al. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmospheric Research, 2021, 248: 105199 [24] Korner C, Farquhar GD, Wong SC. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 1991, 88: 30-40 [25] 郑淑霞, 上官周平. 陆生植物稳定碳同位素组成与全球变化. 应用生态学报, 2006, 17(4): 4733-4739 [26] 旺罗, 吕厚远, 吴乃琴, 等. 青藏高原现生禾本科植物的δ13C与海拔高度的关系. 第四纪研究, 2003, 23(5): 573-580 [27] 贺玲威, 杨君珑, 李小伟. 沙棘属植物叶片碳稳定同位素含量与气候的关系. 应用生态学报, 2021, 32(3): 819-824 [28] 邱权, 李吉跃, 王军辉, 等. 柴达木盆地白刺叶片δ13C与叶片和土壤养分指标的关系. 西北植物学报, 2013, 33(11): 2301-2308 [29] Terwilliger VJ, Betancourt JL, Leavitt SW, et al. Leaf cellulose δD and δ18O trends with elevation differ in direction among co-occurring, semiarid plant species. Geochimica et Cosmochimica Acta, 2002, 66: 3887-3900 [30] Gori Y, Wehrens R, La Porta N, et al. Oxygen and hydrogen stable isotope ratios of bulk needles reveal the geographic origin of Norway spruce in the European Alps. PLoS One, 2015, 10(3): e0118941 [31] Ma F, Liang WY, Zhou ZN, et al. Spatial variation in leaf stable carbon isotope composition of three Caragana species in Northern China. Forests, 2018, 9: 297 [32] 张庆乐, 刘卫国, 刘禹, 等. 贺兰山地区树轮碳氧同位素与夏季风降水的相关性讨论. 地球化学, 2005, 34(1): 51-56 [33] 陈瑶, 勾晓华, 刘文火, 等. 亚洲树轮稳定氧同位素研究进展. 冰川冻土, 2017, 39(2): 308-316 [34] 艾喆, 徐婷婷, 李媛媛, 等. 鬼箭锦鸡儿叶片和土壤碳稳定同位素特征及其影响因素. 应用生态学报, 2021, 32(5): 1744-1752 [35] 陈拓, 秦大河, 任贾文. 树轮纤维素中氧同位素温度意义. 冰川冻土, 1999, 21(3): 207-212 [36] 曹夏禹, 张翔, 肖洋, 等. 基于稳定碳同位素比的植物水分利用效率分析: 以鄱阳湖湿地为例. 人民长江, 2017, 48(5): 17-20, 25 [37] 郑鹏飞, 余新晓, 贾国栋, 等. 北京山区侧柏人工林水分利用效率及其影响因素. 应用生态学报, 2019, 30(3): 727-734 [38] 黄甫昭, 李冬兴, 王斌, 等. 喀斯特季节性雨林植物叶片碳同位素组成及水分利用效率. 应用生态学报, 2019, 30(6): 1833-1839 [39] 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 2011, 35(2): 119-124 [40] 刘旻霞, 于瑞新, 穆若兰, 等. 兰州北山不同海拔3种典型绿化树种光合特性研究. 生态环境学报, 2021, 30(10): 1943-1951 [41] 范秀华, 卢文敏, 方晓雨, 等. 长白山不同海拔岳桦(Betula ermanii)的光合生理. 应用与环境生物学报, 2012, 18(4): 553-558 [42] 潘佳, 李荣, 胡小文. 水分条件对红砂叶片碳同位素组成与光合特性和分枝生长的影响. 西北植物学报, 2016, 36(6): 1190-1198 [43] 刘娟娟, 李吉跃, 张建国. 高CO2浓度和干旱胁迫对4种树苗光合特性的影响. 林业科学研究, 2015, 28(3): 339-345 |