应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2432-2444.doi: 10.13287/j.1001-9332.202409.010
孙瑞丰1,2,3, 韩广轩1,2,3*
收稿日期:
2023-12-17
接受日期:
2024-04-28
出版日期:
2024-09-18
发布日期:
2025-03-18
通讯作者:
* E-mail: gxhan@yic.ac.cn
作者简介:
孙瑞丰, 男, 1998年生, 硕士研究生。主要从事滨海湿地碳循环研究。E-mail: srf980511@163.com
基金资助:
SUN Ruifeng1,2,3, HAN Guangxuan1,2,3*
Received:
2023-12-17
Accepted:
2024-04-28
Online:
2024-09-18
Published:
2025-03-18
摘要: 土壤有机碳库是陆地生态系统最大的碳库,在减缓全球气候变化中发挥重要作用。温度升高通过影响土壤有机碳库的收支平衡和稳定过程,进而对土壤有机碳含量、组分和化学结构产生影响。当前通过解析有机碳组分和分子结构,揭示增温对土壤有机碳稳定性的影响及其机制已成为研究热点。本文从土壤有机碳含量、组分和化学结构三个方面综述了增温对土壤有机碳库的影响,总结了植物生产力和群落特征、微生物活性和群落结构等关键生态系统过程对增温的响应。建议未来应从系统阐明相关微生物机制、定量解析土壤有机碳来源和周转过程、建立长期动态的联网实验和挖掘优化碳循环模型中的关键参数等方面,加强前瞻布局和系统研究,为更好地理解全球变暖下的土壤有机碳动态变化与机制以及预测气候变化下土壤有机碳库的潜在变化趋势提供理论支持。
孙瑞丰, 韩广轩. 模拟增温对土壤有机碳含量、组分和化学结构的影响: 进展与展望[J]. 应用生态学报, 2024, 35(9): 2432-2444.
SUN Ruifeng, HAN Guangxuan. Effects of simulated warming on content, fractions and chemical structure of soil organic carbon:Progress and prospects[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2432-2444.
[1] Jansson C, Wullschleger SD, Kalluri UC, et al. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. BioScience, 2010, 60: 685-696 [2] Sakschewski B, von Bloh W, Boit A, et al. Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change, 2016, 6: 1032-1036 [3] Chen J, Elsgaard L, van Groenigen KJ, et al. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biology, 2020, 26: 1944-1953 [4] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021 [5] Yan C, Yuan ZY, Shi XR, et al. A global synthesis reveals more response sensitivity of soil carbon flux than pool to warming. Journal of Soils and Sediments, 2020, 20: 1208-1221 [6] Guo X, Gao Q, Yuan MT, et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications, 2020, 11: 4897 [7] Melillo JM, Frey SD, DeAngelis KM, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358: 101-104 [8] Wei XY, Van Meerbeek K, Yue K, et al. Responses of soil C pools to combined warming and altered precipitation regimes: A meta-analysis. Global Ecology and Biogeography, 2023, 32: 1660-1675 [9] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [10] Poeplau C, Don A, Six J, et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils: A comprehensive method comparison. Soil Biology and Biochemistry, 2018, 125: 10-26 [11] Semenov VM, Lebedeva TN, SokolovDA, et al. Mea-surement of the soil organic carbon pools isolated using bio-physical-chemical fractionation methods. Eurasian Soil Science, 2023, 56: 1327-1342 [12] Ng EL, Patti AF, Rose MT, et al. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities? Soil Biology and Biochemistry, 2014, 70: 54-61 [13] Yuan X, Chen Y, Qin WK, et al. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Pla-teau. Science of the Total Environment, 2021, 790: 148072 [14] Yin HJ, Xiao J, Liu YF, et al. Warming effects on root morphological and physiological traits: The potential consequences on soil C dynamics as altered root exudation. Agricultural and Forest Meteorology, 2013, 180: 287-296 [15] Kengdo SK, Ahrens B, Tian Y, et al. Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil. Science of the Total Environment, 2023, 855: 158800 [16] Zhao G, Zhang YJ, Cong N, et al. Climate warming weakens the negative effect of nitrogen addition on the microbial contribution to soil carbon pool in an alpine meadow. Catena, 2022, 217: 106513 [17] Shi Z, Sherry R, Xu X, et al. Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 2015, 103: 1131-1140 [18] Yan YJ, Niu SL, He YC, et al. Changing plant species composition and richness benefit soil carbon sequestration under climate warming. Functional Ecology, 2022, 36: 2906-2916 [19] Harte J. Chapter 1: Reflections on 27 years of manipulated ecosystem warming in a subalpine meadow// Mohan JE, ed. Ecosystem Consequences of Soil Warming. New York: Academic Press, 2019: 1-27 [20] Xu X, Shi Z, Li DJ, et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Global Change Biology, 2015, 21: 3846-3853 [21] Spohn M, Bagchi S, Biederman LA, et al. The positive effect of plant diversity on soil carbon depends on climate. Nature Communications, 2023, 14: 6624 [22] Fang X, Zhou GY, Qu C, et al. Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon. Soil Biology and Biochemistry, 2020, 142: 107707 [23] Tao XY, Yang ZF, Feng JJ, et al. Experimental warming accelerates positive soil priming in a temperate grassland ecosystem. Nature Communications, 2024, 15: 1178 [24] Chen J, Luo YQ, García-Palacios P, et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology, 2018, 24: 4816-4826 [25] Bai YP, Li F, Yang G, et al. Meta-analysis of experimental warming on soil invertase and urease activities. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2018, 68: 104-109 [26] Xu HW, Huang LL, Chen J, et al. Changes in soil microbial activity and their linkages with soil carbon under global warming. Catena, 2023, 232: 107419 [27] Ziegler SE, Benner R, Billings SA et al. Climate warming can accelerate carbon fluxes without changing soil carbon stocks. Frontiers in Earth Science, 2017, 5: 2 [28] Chen Y, Han MG, Yuan X, et al. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau. Global Change Biology, 2022, 28: 1618-1629 [29] Xue X, Peng F, You QG, et al. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai-Tibet Plateau. Ecology and Evolution, 2015, 5: 4063-4078 [30] Pokhrel Y, Felfelani F, Satoh Y, et al. Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11: 226-233 [31] Lv GY, Jin J, He MT, et al. Soil moisture content dominates the photosynthesis of C3 and C4 plants in a desert steppe after long-term warming and increasing precipitation. Plants, 2023, 12: 2903 [32] Quan Q, Tian DS, Luo YQ, et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5: eaav1131 [33] Zhao FB, Wu YP, Hui JY, et al. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management, 2021, 16: 24 [34] Zhou YQ, Sun BY, Xie BH, et al. Warming reshaped the microbial hierarchical interactions. Global Change Biology, 2021, 27: 6331-6347 [35] Luo M, Huang JF, Zhu WF, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: A review. Hydrobiologia, 2019, 827: 31-49 [36] Lugato E, Lavallee JM, Haddix ML, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14: 295-300 [37] Jung JY, Michelsen A, Kim M, et al. Responses of surface SOC to long-term experimental warming vary between different heath types in the high Arctic tundra. European Journal of Soil Science, 2020, 71: 752-767 [38] Zhou M, Xiao Y, Zhang XY, et al. Warming-dominated climate change impacts on soil organic carbon fractions and aggregate stability in Mollisols. Geoderma, 2023, 438: 116618 [39] Melillo JM, Butler S, Johnson J, et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 9508-9512 [40] Sokol NW, Sanderman J, Bradford MA. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 2019, 25: 12-24 [41] von Lützow M, Kögel-Knabner I, Ekschmittb K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39: 2183-2207 [42] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成:机制和模型. 北京林业大学学报, 2022, 44(10): 11-22 [43] Ren C, Liu KS, Dou PP, et al. The changes in soil microorganisms and soil chemical properties affect the heterogeneity and stability of soil aggregates before and after grassland conversion. Agriculture, 2022, 12: 307 [44] Yu WJ, Huang WJ, Weintraub-Leff SR, et al. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry, 2022, 172: 108756 [45] Sun RF, Sun BY, Li XG, et al. Seven-year experimental warming decreases labile but not recalcitrant soil organic carbon fractions in a coastal wetland. Journal of Soils and Sediments, 2023, 23: 3071-3081 [46] Chen Y, Han MG, Yuan X, et al. Long-term warming reduces surface soil organic carbon by reducing mineral-associated carbon rather than “free” particulate carbon. Soil Biology and Biochemistry, 2023, 177: 108905 [47] Silveira ML,Comerford NB, Reddy KR, et al. Characterization of soil organic carbon pools by acid hydrolysis. Geoderma, 2008, 144: 405-414 [48] 王兴, 钟泽坤, 王佳懿, 等. 黄土高原撂荒草地土壤碳库对两年增温增雨的响应. 土壤学报, 2023, 60(2): 523-534 [49] Chen JH, Chen D, Xu QF, et al. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biology and Fertility of Soils, 2019, 55: 185-197 [50] Li JH, Liu H, Zhang Q, et al. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Pro-vince, China. Soil and Tillage Research, 2019, 195: 104361 [51] Qiu Y, Xie ZK, Wang YJ, et al. Long-term effects of gravel-sand mulch on soil organic carbon and nitrogen in the Loess Plateau of northwestern China. Journal of Arid Land, 2015, 7: 46-53 [52] Romero CM, Engel RE, D’Andrilli J, et al. Organic carbon quality, composition oxidizable soil organic matter from semiarid drylands reflected by absorbance spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2018, 120: 19-30 [53] 徐文静, 张宇亭, 魏勇, 等. 长期施肥对稻麦轮作紫色土有机碳组分及酶活性的影响. 水土保持学报, 2022, 36(2): 292-299 [54] 王茹, 张永清, 宗宁, 等. 长期增温对西藏高寒草甸土壤团聚体周转和稳定性影响. 土壤通报, 2023, 54(3): 596-605 [55] Stewart CE, Paustian K, Conant RT, et al. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry, 2009, 41: 357-366 [56] 张丽敏, 徐明岗, 娄翼来, 等. 长期施肥下黄壤性水稻土有机碳组分变化特征. 中国农业科学, 2014, 47(19): 3817-3825 [57] Lyu H, Watanabe T, Zhong RH, et al. Factors controlling sizes and stabilities of subsoil organic carbon pools in tropical volcanic soils. Science of the Total Environment, 2021, 769: 144842 [58] Li TT, Liao CJ, Wang C, et al. Soil carbon emission sources differ under litter and nutrient addition during secondary succession: Evidence from a mesocosm study using a three-transfer-pool model. Journal of Soil Science and Plant Nutrition, 2023, 23: 527-539 [59] 黄倩, 吴靖霆, 陈杰, 等. 土壤吸附可溶性有机碳研究进展. 土壤, 2015, 47(3): 446-452 [60] Gregorich EG, Beare MH, Mckim UF, et al. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal, 2006, 70: 975-985 [61] 张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用. 应用生态学报, 2011, 22(7): 1921-1930 [62] Zhang J, Kuang LH, Mou ZJ, et al. Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant and Soil, 2022, 481: 349-365 [63] Liu FR, Zhang YM, Luo JX. The effects of experimental warming and CO2 concentration doubling on soil organic carbon fractions of a montane coniferous forest on the eastern Qinghai-Tibetan Plateau. European Journal of Forest Research, 2018, 137: 211-221 [64] Phillips CL, Murphey V, Lajtha K, et al. Asymmetric and symmetric warming increases turnover of litter and unprotected soil C in grassland mesocosms. Biogeoche-mistry, 2016, 128: 217-231 [65] Song B, Niu SL, Zhang Z, et al. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS One, 2012, 7: 975-985 [66] Zhou XQ, Chen CR, Wang YF, et al. Warming rather than increased precipitation increases soil recalcitrant organic carbon in a semiarid grassland after 6 years of treatments. PLoS One, 2013, 8: e53761 [67] 陈玺洋, 潘玉梅, 齐志远, 等. 北方农牧交错带温性盐碱化草地土壤碳组分对模拟增温的响应机制. 生态学报, 2023, 43(18): 7448-7461 [68] Belay-Tedla A, Zhou XH, Su B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology and Biochemistry, 2009, 41: 110-116 [69] Guan S, An N, Zong N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2018, 116: 224-236 [70] Zhang CH, Tang GY, Sun YY. Asymmetric and symmetric warming induced stability of organic carbon in a calcareous soil. Soil Science Society of America Journal, 2019, 83: 1200-1208 [71] Stuble KL, Ma S, Liang JY, et al. Long-term impacts of warming drive decomposition and accelerate the turnover of labile, not recalcitrant, carbon. Ecosphere, 2019, 10: e02715 [72] Wang H, Li HY, Ping F, et al. Microbial acclimation triggered loss of soil carbon fractions in subtropical wetlands subjected to experimental warming in a laboratory study. Plant and Soil, 2016, 406: 101-116 [73] Wang H, Li JQ, Chen HY, et al. Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon. Science of the Total Environment, 2022, 804: 150197 [74] Xu G, Chen J, Berninger F, et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biology and Bioche-mistry, 2015, 91: 1-13 [75] Zhang B, Chen SY, He XY, et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau. PLoS One, 2014, 9: e103859 [76] Xu X, Sherry RA, Niu SL, et al. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant and Soil, 2012, 361: 307-315 [77] Xue K, Xie JP, Zhou AF, et al. Warming alters expressions of microbial functional genes important to ecosystem functioning. Frontiers in Microbiology, 2016, 7: 688 [78] Zhang QF, Feng JG, Li J, et al. A distinct sensitivity to the priming effect between labile and stable soil organic carbon. New Phytologist, 2023, 237: 88-99 [79] Karhu K, Auffret MD, Dungait JAJ, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 2014, 513: 81-84 [80] Feng WT, Liang JY, Hale LE, et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Global Change Biology, 2017, 23: 4765-4776 [81] Cheng L, Zhang NF, Yuan MT, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal, 2017, 11: 1825-1835 [82] Hopkins DW, Dungait JAJ. Soil microbiology and nutrient cycling// Dixon GR, Tilston EL, eds. Soil Microbiology and Sustainable Crop Production. Amsterdam, the Netherlands: Springer, 2010: 59-80 [83] Wang H, He ZL, Lu ZM, et al. Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming. Applied and Environmental Microbiology, 2012, 78: 7652-7661 [84] Fujii K, Hayakawa C. Recalcitrance of lichen and moss litters increases soil carbon storage on permafrost. Plant and Soil, 2022, 472: 595-608 [85] Xu X, Luo YQ, Zhou JZ. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology and Biochemistry, 2012, 50: 142-148 [86] Plante AF, Conant RT, Carlson J, et al. Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biology and Biochemistry, 2010, 42: 1991-1996 [87] Wagai R, Kishimoto-Mo AW, Yonemura S, et al. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biology, 2013, 19: 1114-1125 [88] Xu X, Zhou Y, Ruan HH, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biology and Biochemistry, 2010, 42: 1811-1815 [89] Hartley IP, Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry, 2008, 40: 1567-1574 [90] 黄锦学, 熊德成, 刘小飞, 等. 增温对土壤有机碳矿化的影响研究综述. 生态学报, 2017, 37(1): 12-24 [91] 张福韬, 乔云发. 红外光谱与核磁共振在土壤有机质结构研究中的应用. 安徽农业科学, 2015, 43(7): 81-84 [92] Ofiti NOE, Zosso CU, Soong JL, et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biology and Biochemistry, 2021, 156: 108185 [93] Hsu HT, Lawrence CR, Winnick MJ, et al. A molecular investigation of soil organic carbon composition across a subalpine catchment. Soil Systems, 2018, 2: 6 [94] Margenot AJ, Calderón FJ, Bowles TM, et al. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato Fields. Soil Science Society of America Journal, 2015, 79: 772-782 [95] 韦丹, 李涛, 邹显花, 等. 核磁共振技术在植物研究中的应用进展. 福建林业科技, 2018, 45(4): 116-121 [96] Norris CE, Quideau SA, Bhatti JS, et al. Soil carbon stabilization in jack pine stands along the Boreal Forest Transect Case Study. Global Change Biology, 2011, 17: 480-494 [97] Prietzel J, Müller S, Kogel-Knabner I, et al. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy. Science of the Total Environment, 2018, 628-629: 906-918 [98] Ranatunga TD, He ZQ, Bhat KN, et al. Solid-state 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter fractions in a forest ecosystem subjected to prescribed burning and thinning. Pedosphere, 2017, 27: 901-911 [99] 张仲胜, 李敏, 宋晓林, 等. 气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展. 土壤学报, 2018, 55(2): 273-282 [100] Marty C, Piquette J, Morin H, et al. Nine years of in situ soil warming and topography impact the temperature sensitivity and basal respiration rate of the forest floor in a Canadian boreal forest. PLoS One, 2020, 14: e0226909 [101] Stoica I, Anaraki MT, Muratore T, et al. Chronic warming and nitrogen-addition alter soil organic matter molecular composition distinctly in tandem compared to individual stressors. ACS Earth and Space Chemistry, 2023, 7: 609-622 [102] Pisani O, Frey SD, Simpson AJ, et al. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry, 2015, 123: 391-409 [103] Wang FF, Tao YR, Yang SC, et al. Warming and flooding have different effects on organic carbon stability in mangrove soils. Journal of Soils and Sediments, 2023, doi: 10.1007/s11368-023-03636-2 [104] Stroud E, Henry HAL. Contrasting short-term vs. long-term effects of warming and nitrogen addition on soil organic matter density fractions in a temperate grass-dominated system. Plant and Soil, 2023, 487: 407-417 [105] Li F, Peng YF, Chen LY, et al. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology, 2020, 34: 911-922 [106] Chen HY, Chen HY, Liu X, et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecology Letters, 2022, 25: 2489-2499 [107] Ma LX, Ju ZQ, Fang YY, et al. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biology and Biochemistry, 2022, 170: 108693 [108] Feng XJ, Simpson AJ, Wilson KP, et al. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 2008, 1: 836-839 [109] vanden Enden L, Anthony MA, Frey SD, et al. Biogeochemical evolution of soil organic matter composition after a decade of warming and nitrogen addition. Biogeochemistry, 2021, 156: 161-175 [110] Jia J, Liu ZG, Haghipour N, et al. Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology Letters, 2023, 26: 778-788 [111] Solly EF, Lindahl BD, Dawes MA, et al. Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytologist, 2017, 215: 766-778 [112] Tao XY, Feng JJ, Yang YF, et al. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome, 2020, 8: 84 [113] Lv WW, Zhang LR, Niu HS, et al. Non-linear temperature sensitivity of litter component decomposition under warming gradient with precipitation addition on the Tibetan Plateau. Plant and Soil, 2020, 448: 335-351 [114] Campo J, Merino A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Global Change Biology, 2016, 22: 1942-1956 [115] Tharayil N, Suseela V, Triebwasser DJ, et al. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New Phytologist, 2011, 191: 132-145 [116] 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540 [117] Verbrigghe N, Meeran K, Bahn M, et al. Long-term warming reduced microbial biomass but increased recent plant-derived C in microbes of a subarctic grassland. Soil Biology and Biochemistry, 2022, 167: 108590 [118] Zhang F, Zhang KP, Li YF, et al. A deeper look at crop residue and soil warming impact on the soil C pools. Soil and Tillage Research, 2022, 215: 105192 [119] Dong Y, Chen RR, Petropoulos E, et al. Microbial carbon use efficiency in coastal soils along a salinity gradient revealed by ecoenzymatic dtoichiometry. Journal of Geophysical Research-Biogeosciences, 2022, 127: e2022JG006800 [120] Yi CX, Wei SH, Hendrey G. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 2014, 4: 5472 |
[1] | 安韶山, 胡洋, 王宝荣. 黄土高原植被恢复中土壤有机碳稳定机制研究进展 [J]. 应用生态学报, 2024, 35(9): 2413-2422. |
[2] | 黄路路, 周慧玲, 王启帆, 赵欣然, 陈锦辉, 游成铭, 徐琳, 谭波, 徐振锋, 徐红伟. 陆地生态系统植物碳、氮和磷含量对增温的响应: Meta分析 [J]. 应用生态学报, 2024, 35(9): 2527-2534. |
[3] | 田圣陶, 罗洋, 隋鹏祥, 王浩, 任英, 周思琪, 刘海峰, 郑金玉. 长期耕作对黑土有机碳储量及其组分的影响 [J]. 应用生态学报, 2024, 35(8): 2167-2175. |
[4] | 高闻哲, 李廷强. 不同钝化剂对土壤有机碳转化的影响及作用机制研究进展 [J]. 应用生态学报, 2024, 35(8): 2291-2300. |
[5] | 罗凯, 贾昕, 母艳梅, 高圣杰, 郝少荣, 查天山. 增温对毛乌素沙地黑沙蒿和赖草凋落叶混合分解的调控具有时间依赖性 [J]. 应用生态学报, 2024, 35(7): 1753-1761. |
[6] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[7] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[8] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[9] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[10] | 覃振凯, 刘润红, 何鹏, 王聪, 聂彦霞, 申卫军. 马尾松纯林混交改造对土壤微生物残体碳和有机碳组分的影响 [J]. 应用生态学报, 2024, 35(1): 141-152. |
[11] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[12] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[13] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[14] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
[15] | 王婷, 牟长城, 孙梓淇, 李美霖, 王文婧, 许文, 赵海明. 长白山园池沼泽湿地碳源/汇沿湖岸至高地环境梯度变化 [J]. 应用生态学报, 2023, 34(9): 2363-2373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||