[1] Cai WX, He NP, Li MX, et al. Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 2022, 67: 836-843 [2] 杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素. 世界林业研究, 2022, 35(1): 76-81 [3] 胡慧蓉, 马焕成, 罗承德, 等. 森林土壤有机碳分组及其测定方法. 土壤通报, 2010, 41(4): 1018-1024 [4] Prescott CE, Vesterdal L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 2021, 498: 119522 [5] Jia GM, Xi Y, Zhang BL, et al. Soil labile organic carbon and microbial activity changes with age in citrus (Citrus sinensis Osb.) plantations in China. Australian Forestry, 2014, 77: 153-158 [6] 黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响. 水土保持学报, 2015, 29(6): 184-190 [7] Han X, Liu X, Li ZW, et al. Characteristics of soil organic carbon fractions and stability along a chronosequence of Cryptomeria japonica var. sinensis plantation in the Rainy Area of Western China. Forests, 2022, 13: 1663 [8] He XX, Huang YZ, Zhang QC, et al. Distribution of organic carbon fractions in soil aggregates in Chinese fir plantations with different stand ages. Ecological Processes, 2021, 10: 49 [9] Liu TR, Peng DL, Tan ZJ, et al. Effects of stand density on soil respiration and labile organic carbon in different aged Larixprincipis-rupprechtii plantations. Ecological Processes, 2021, 10: 44 [10] Deng WB, Wang X, Hu HB, et al. Variation characte-ristics of soil organic carbon storage and fractions with stand age in north subtropical Quercus acutissima Carruth. forest in China. Forests, 2022, 13: 1649 [11] Wang CQ, Xue L, Jiao RZ. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolata (Lamb.) Hook plantations. Forest Ecology and Management, 2021, 482: 118887 [12] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征. 应用生态学报, 2014, 25(6): 1569-1577 [13] 刘宣, 崔宁洁, 谭飞川, 等. 华西雨屏区柳杉人工林土壤持水能力及其对土壤有机碳的指示作用. 应用与环境生物学报, 2023, 29(3): 670-679 [14] 刘宣, 马孟平, 洪宗文, 等. 华西雨屏区不同发育阶段柳杉人工林枝叶4种矿质元素重吸收特征. 应用与环境生物学报, 2023, 29(3): 680-689 [15] 胡一帆, 刘宣, 李宇, 等. 华西雨屏区不同林龄柳杉人工林土壤磷组分特征. 生态学报, 2024, 44(2): 686-698 [16] Shen Y, Xiong SC, You CM, et al. Soil microbial biomass and community composition across a chronosequence of Chinese cedar plantations. Forests, 2023, 14: 470 [17] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2005: 25-114 [18] Chen H, Li DJ, Xiao KC, et al. Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology, 2018, 32: 1400-1409 [19] Luan JW, Xiang CH, Liu SR, et al. Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen Mountain, Sichuan, China. Geoderma, 2010, 156: 228-236 [20] Xiang HM, Luo XZ, Zhang LL, et al. Forest succession accelerates soil carbon accumulation by increasing recalcitrant carbon stock in subtropical forest topsoils. Catena, 2022, 212: 106030 [21] Rovira P, Vallejo VR. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biology and Biochemistry, 2006, 39: 202-215 [22] Zhou SX, Butenschoen O, Barantal S, et al. Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna. Journal of Ecology, 2020, 108: 2283-2297 [23] 张磊, 贾淑娴, 李啸灵, 等. 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响. 水土保持学报, 2021, 35(3): 244-251 [24] 许子君, 万晓华, 梁艺凡, 等. 根系在凋落物层生长对凋落叶分解及酶活性的影响. 应用生态学报, 2021, 32(1): 31-38 [25] 胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制. 应用生态学报, 2024, 35(1): 153-160 [26] 赵玉林, 陈云江, 冯毅, 等. 成都龙泉山不同林龄香樟人工林土壤养分和微生物群落结构. 应用与环境生物学报, 2022, 28(5): 1151-1159 [27] Zhang Y, Tigabu M, Yi ZG, et al. Soil parent material and stand development stage effects on labile soil C and N pools in Chinese fir plantations. Geoderma, 2019, 338: 247-258 [28] 张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系. 生态学报, 2019, 39(7): 2520-2531 [29] 李佳玉, 施秀珍, 李帅军, 等. 杉木人工林和天然次生林林龄对土壤酶活性的影响. 应用生态学报, 2024, 35(2): 339-346 [30] 史丽娟, 王辉民, 付晓莉, 等. 中亚热带典型人工林土壤酶活性及其化学计量特征. 应用生态学报, 2020, 31(6): 1980-1988 [31] Wang CQ, Xue L, Dong Y, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations. Science of the Total Environment, 2021, 758: 143695 [32] 苗娟, 周传艳, 李世杰, 等. 不同林龄云南松林土壤有机碳和全氮积累特征. 应用生态学报, 2014, 25(3): 625-631 [33] 李岩, 方晰, 项文化, 等. 湘中丘陵区4种森林土壤水溶性有机碳含量及其与土壤养分的关系. 土壤通报, 2014, 45(6): 1483-1490 [34] Chen GC, Gao M, Chen SY, et al. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Forest Ecology and Management, 2018, 422: 87-94 [35] Augusto L, Boca A. Tree functional traits, forest biomass, and tree species diversity interact with site pro-perties to drive forest soil carbon. Nature Communications, 2022, 13: 1097 [36] 吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响. 土壤学报, 2019, 56(6): 1504-1513 [37] Shu WW, Ming AN, Zhang JH, et al. Effects of close-to-nature transformation on soil enzyme activities and organic carbon fractions in Cuninghamia lanceolata and Pinus massoniana plantations. Forests, 2022, 13: 872 [38] Jia YF, Liu ZG, Zhou L, et al. Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species. Soil Biology and Biochemistry, 2023, 176: 108884 [39] Villarino SH, Pinto P, Jackson RB, et al. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Science Advances, 2021, 7: eabd3176 |