[1] Li Q, Lv JH, Peng CH, et al. Nitrogen addition acce-lerates phosphorus cycling and changes phosphorus use strategy in a subtropical Moso bamboo forest. Environmental Research Letters, 2021, 16: 024023 [2] Lambers H, Raven JA, Shaver GR, et al. Plant nu-trient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 2008, 23: 95-103 [3] 李孝龙, 周俊, 彭飞, 等. 植物养分捕获策略随成土年龄的变化及生态学意义. 植物生态学报, 2021, 45(7): 714-727 [4] 倪惠菁, 储昊煜, 苏文会, 等. 经营强度对毛竹林土壤团聚体稳定性和碳氮磷分布的影响. 应用生态学报, 2023, 34(4): 928-936 [5] Han MG, Chen Y, Li R, et al. Root phosphatase aligns with the collaboration gradient of the root economics space. New Phytologist, 2022, 234: 837-849 [6] Li YX, Sun LJ, Zhu B. Trade-offs among fine-root phosphorus-acquisition strategies of 15 tropical woody species. Forest Ecosystems, 2022, 9: 100055 [7] 吴静. 氮磷添加对马尾松和杉木细根功能性状特征影响. 硕士论文. 长沙: 中南林业科技大学, 2023 [8] 聂森. 木麻黄细根形态和化学计量特征对P添加的塑性响应. 中国农学通报, 2024, 40(2): 34-41 [9] 宋豪威, 洪慧滨, 陈思路, 等. 磷添加对米槠和杉木及其混合细根分解的影响. 森林与环境学报, 2021, 41(1): 1-9 [10] 王婷, 沈益康, 汪鹞雄, 等. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响. 陆地生态系统与保护学报, 2021, 1(2): 1-10 [11] 李雨亭. 氮磷添加下亚热带三种珍贵树种幼林磷获取机制研究. 硕士论文. 福州: 福建师范大学, 2023 [12] 李玉敏, 冯鹏飞. 2021年中国竹资源报告. 世界竹藤通讯, 2023(2): 100-103 [13] Zhao HS, Sun S, Ding YL, et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nature Communications, 2021, 12: 5466 [14] 高歌, 李正才, 葛晓改, 等. 施氮对干旱胁迫下毛竹幼苗生物量和根系形态的影响. 生态学杂志, 2022,41(5): 858-864 [15] 刘仁, 张宇飞, 金志芳, 等. 温度调控外源氮添加对毛竹细根分解及其养分释放的影响. 生态学杂志, 2019, 38(12): 3617-3625 [16] Chen GT, Tu LH, Peng Y, et al. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest. Plant and Soil, 2017, 412: 441-451 [17] 王玉芳, 郑棉海, 王森浩, 等. 氮磷添加对华南地区2种人工林土壤氮磷循环酶活性的影响. 热带亚热带植物学报, 2021, 29(3): 244-250 [18] Fan LJ, Xue YW, Wu DH, et al. Long-term nitrogen and phosphorus addition have stronger negative effects on microbial residual carbon in subsoils than topsoils in subtropical forests. Global Change Biology, 2024,30: e17210 [19] 臧艳, 向宇轩, 刘娟, 等. 氮、磷添加对亚热带毛竹林土壤水稳性团聚体及有机碳分布的影响. 林业科学, 2024, 60(7): 8-16 [20] Lugli LF, Andersen KM, Aragao LE, et al. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil, 2020, 450: 49-63 [21] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [22] Kormanik PP, Bryan W, Schultz RC. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Canadian Journal of Micro-biology, 1980, 26: 536-538 [23] An ZQ, Hendrix JW, Hershman DE, et al. Evaluation of the “most probable number”(MPN) and wet-sieving methods for determining soil-borne populations of endo-gonaceous mycorrhizal fungi. Mycologia, 1990, 82: 576-581 [24] 张康, 李佳佳, 魏振浩, 等. 利用土壤化学计量学和酶计量学揭示刺槐林土壤微生物的养分限制状况. 应用生态学报, 2024, 35(7): 1799-1806 [25] Vance ED, Brookes PC, Jenkinson DS. Microbial biomass measurements in forest soils: The use of the chlo-roform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 1987, 19: 697-702 [26] Hedley MJ, Stewart JWB. Method to measure microbial phosphate in soils. Soil Biology and Biochemistry, 1982, 14: 377-385 [27] Deluca TH, Glanville HC, Harris M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119 [28] Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162: 9-24 [29] Tisserant E, Malbreil M, Kuo A, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 20117-20122 [30] Chen WL, Koide RT, Adams TS, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 8741-8746 [31] Cheng L, Chen WL, Adams TS, et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology, 2016, 97: 2815-2823 [32] 于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 2007, 18(5): 959-964 [33] 季杭翔. 氮沉降背景下毛竹根系磷获取策略及其驱动因素研究. 硕士论文. 杭州: 浙江农林大学, 2024 [34] Hinsinger P, Plassard C, Tang CX, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 2003, 248: 43-59 [35] Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 2011, 156: 989-996 [36] Richardson AE, Lynch JP, Ryan PR, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349: 121-156 [37] 朱丽琴. 亚热带常绿阔叶林23个树种细根和菌根真菌功能性状对磷富集斑块的塑性响应. 博士论文. 福州: 福建师范大学, 2021 [38] 金鑫, 曾新颖, 齐昌国, 等. 供磷水平对玉米丛枝菌根侵染及其对异质养分吸收的影响. 植物营养与肥料学报, 2018, 24(1): 163-169 [39] 曹冠华, 张雪, 顾雯, 等. 不同产地滇黄精丛枝菌根真菌、深色有隔内生真菌定殖调查及与主要功效成分含量相关性分析. 中草药, 2019, 50(16): 3930-3936 [40] 刘珊珊, 王全成, 史加勉, 等. 亚热带森林菌根植物根系真菌群落结构对氮磷添加的响应. 应用生态学报, 2023, 34(6): 1547-1554 [41] Treseder KK, Allen MF. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 2000, 147: 189-200 [42] Sun Y, Gu JC, Zhuang HF, et al. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeas-tern China. Ecological Research, 2010, 25: 295-302 [43] Deng Y, Feng G, Chen XP, et al. Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system. Field Crops Research, 2017, 209: 1-9 [44] Roumet C, Birouste M, Picon-Cochard C, et al. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytologist, 2016, 210: 815-826 [45] Rousseau JVD, Sylvia DM, Fox AJ. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytologist, 1994, 128: 639-644 |