欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2020, Vol. 31 ›› Issue (10): 3248-3254.doi: 10.13287/j.1001-9332.202010.033

• 植物保护专栏 • 上一篇    下一篇

基于模糊识别和刺探电位技术鉴定小麦种质资源抗蚜性

姜雅秀, 常文婧, 战一迪, 刘真, 刘勇*   

  1. 山东农业大学植物保护学院, 山东泰安 271018
  • 收稿日期:2019-12-18 接受日期:2020-07-15 出版日期:2020-10-15 发布日期:2021-04-15
  • 通讯作者: * E-mail: liuyong@sdau.edu.cn
  • 作者简介:姜雅秀, 女, 1995年生, 硕士研究生. 主要从事小麦蚜虫取食行为研究. E-mail: jiangyx1110@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0201705)和农作物病虫害绿色防控项目(SYL2017XTTD11)资助

Investigation on the resistance of wheat germplasm resources to aphid based on fuzzy recognition and electrical penetration graph (EPG)techniques

JIANG Ya-xiu, CHANG Wen-jing, ZHAN Yi-di, LIU Zhen, LIU Yong*   

  1. College of Plant Protection, Shandong Agricultural Univer-sity, Tai'an 271018, Shandong, China
  • Received:2019-12-18 Accepted:2020-07-15 Online:2020-10-15 Published:2021-04-15
  • Contact: * E-mail: liuyong@sdau.edu.cn
  • Supported by:
    National Key R&D Program (2017YFD0201705) and the Green Prevention and Control Program for Crop Diseases and Insect Pests (SYL2017XTTD11).

摘要: 利用田间抗蚜性鉴定模糊识别技术,结合室内刺探电位(EPG)植物抗性鉴定技术,比较分析了不同遗传背景的小麦种质资源的抗蚜性,为筛选新型小麦抗蚜种质材料提供依据。2年田间抗蚜性鉴定结果表明: 小偃麦多表现为中抗或低抗,而小黑麦多为中感或低感。选取抗性性状稳定且抗性级别不同的小偃麦21(中抗)、小偃麦22(低抗)、小黑麦31(中感)和小黑麦32(低感)进行麦长管蚜取食行为分析。对非刺探波(Np)、刺探波(P)、电势落差(Pd)、水溶性唾液分泌波(E1)、韧皮部取食波(E2)、细胞机械阻碍波(F)和木质部取食波(G)等基本波形的分析显示,麦长管蚜在小偃麦上首次开始刺探的时间显著长于小黑麦,且在小偃麦上的E1波的持续时间显著大于小黑麦;麦长管蚜在小偃麦21上的F波和小偃麦22上Np波的持续时间最长,在小黑麦31上的P波和小黑麦32上的G波的持续时间最长。以E1、F和Np波的持续时间为指标,基于刺探电位的小麦种质资源抗性水平鉴定结果与田间鉴定结果基本一致。因此,使用EPG技术筛选抗蚜小麦材料时,建议采用E1、F和Np波作为评价小麦抗性水平的指标。小偃麦21、22对麦长管蚜的抗性水平较高,可作为小麦抗蚜育种的种质材料。

关键词: 种质资源, 小麦, 模糊识别技术, 刺探电位, 植物抗蚜虫性

Abstract: We analyzed the resistance of wheat germplasm resources with different genetic backgrounds to aphids by fuzzy recognition technique in field and electrical penetration graph (EPG) in laboratory, with the aim to find new aphid-resistance resource. Results from a two-year field experiment showed that most trititrigia had medium and low resistance, while most triticale were medium and low susceptible. The trititrigia 21 (medium resistance), trititrigia 22 (low resistance), triticale 31 (medium susceptable) and triticale 32 (low susceptable) with stable resistance traits and diffe-rent resistance levels were selected for feeding behavior analysis of Sitobion avenae. We analyzed the basic waveforms, including non-feeding wave (Np), probing wave (P), potential drop (Pd), secretion of water saliva wave (E1), phloem feeding wave (E2), cellular mechanical hindrance wave (F), and xylem feeding wave (G). The time for initial probe of S. avenae on trititrigia was significantly longer than that of triticale, while the duration of E1 wave on trititrigia was significantly longer than that of triticale. The duration of F wave on trititrigia 21 and the Np wave on the trititrigia 22 were the longest, while that of P wave on triticale 31 and the G wave on triticale 32 were the longest. Taking the durations of E1, F and Np waves as indices, the field identification on the resis-tance of wheat germplasm resources to aphid based on fuzzy recognition technique was basically consistent with that using EPG. Our results suggest that E1, F and Np waves could be used to evaluate the resistance levels of wheat to aphid. Tititrigia 21 and 22 were more resistant to aphid, which could be used as the germplasm for breeding aphid-resistance wheat varieties.

Key words: germplasm resouce, wheat, fuzzy recognition technique, electrical penetration graph, plant resistance to aphid