欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

刺参对浅海筏式贝类养殖系统的修复潜力

袁秀堂1, 2;杨红生1;周毅1;毛玉泽3;许强1;王丽丽2   

  1. 1中国科学院海洋研究所, 山东青岛 266071;2国家海洋环境监测中心, 辽宁大连 116023;3中国水产科学研究院黄海水产研究所, 山东青岛 266071
  • 收稿日期:2007-07-04 修回日期:1900-01-01 出版日期:2008-04-20 发布日期:2008-04-20

Bioremediation potential of Apostichopus japonicus (Selenka) in coastal bivalve suspension aquaculture system.

YUAN Xiu-tang1,2;YANG Hong-sheng1;ZHOU Yi1;MAO Yu-ze3;XU Qiang1;WANG Li-li2   

  1. 1Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;2National Marine Environmental Monitoring Center, Dalian 116023, Liaoning, China;3Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Science, Qingdao 266071, Shandong, China
  • Received:2007-07-04 Revised:1900-01-01 Online:2008-04-20 Published:2008-04-20

摘要: 浅海筏式养殖滤食性贝类产生大量的粪便和假粪(总称生物沉积物),对海水养殖环境产生一系列影响;而沉积食性海参能够有效清除颗粒有机物,在海水养殖系统中扮演“清道夫”的生态角色.为评估刺参在浅海筏式贝类养殖系统中的生物修复潜力,本文在不同季节现场研究了贝参混养模式下刺参对贝类生物沉积物的摄食及生长和排泄特征.结果表明: 刺参能够在新设计的养殖设施中与滤食性贝类混养,最大生长率达0.34%·d-1; 并可通过摄食有效清除贝类生物沉积物, 摄食率为0.1746 g·g-1·d-1(夏季,21.2 ℃)、0.0989 g·g-1·d-1(秋季,19.2 ℃)和0.0050 g·g-1·d-1(冬季,7.7 ℃);刺参主要通过排泄溶解形态的NH4+N和PO43- -P来促进沉积物中营养盐的再生,其排泄率也呈现明显的季节变化.基于现场试验数据,估算了刺参在桑沟湾的生物修复潜力, 刺参与贝类混养可摄食4.5~159.6 kg·hm-2·d-1生物沉积物、排泄1 382.5~3 678.1 mmol·hm-2·d-1NH4+-N及74.6~335.7 mmol·hm-2·d-1PO43--P.表明刺参对浅海筏式贝类养殖系统具有较大的生物修复潜力,贝-参混养模式不仅能够取得较大的生态效益,而且能显著增加养殖生产的经济效益.

关键词: 北重楼, 气候变化, MaxEnt模型, 主导气候因子, 潜在适生区

Abstract: Suspension aquaculture of filter-feeding bivalves can produce large amount of faeces and pseudofaeces (biodeposits) that may impact aquaculture environment, while deposit-feeding sea cucumbers may effectively utilize such particulate wastes and act as a scavenger in mariculture system. In this paper, the ingestion, growth, and excretion of deposit-feeder Apostichopus japonicus were investigated in situ seasonally to evaluate its bioremediation potential of a suspension aquaculture system of filter-feeding bivalves. The results showed that A. japonicus could grow well in newly designed culture nets, with its maximum specific growth rate being 0.34%·d-1. The A. japonicus could effectively use the biodeposits generated by co-cultured bivalves, and the ingestion rate at 21.2 ℃ in summer, 19.2 ℃ in autumn, and 7.7 ℃ in winter was 0.1746, 0.0989, and 0.0050 g·g-1·d-1, respectively. A. japonicus could promote the regeneration of nutrients in biodeposits via the excretion of considerable amount of dissolved N and P, and the excretion also showed obvious seasonal fluctuation. The extrapolation based on the in situ investigation results showed that when co-cultivated with bivalves in lantern nets, A. japonicus would ingest 4.5-159.6 kg·hm-2·d-1 of dry biodeposits and excrete 1 382.5-3 6781 mmol·hm-2·d-1 of NH4+-N and 74.6-335.7 mmol·hm-2·d-1 of PO43--P, indicating that the deposit-feeding A. japonicus had a great bioremediation capability in suspension aquaculture systems. The integrated model of deposit-feeding A. japonicus and filter-feeding bivalve could not only benefit the economy, but also sustain the environment.

Key words: MaxEnt model, dominant climate factor, Paris verticillata, climate change, potential suitable area