[1] Karlen DL, Andrews SS, Weinhold BJ, et al. Soil qua-lity: Humankind's foundation for survival. Journal of Soil and Water Conservation, 2003, 58: 171-179 [2] Doran JW, Parkin TB. Defining and assessing soil qua-lity// Doran JW, Coleman DC, Bezdicek DF, eds. Defining Soil Quality for a Sustainable Environment. Madison, WI, USA: Soil Society of America Special Publication, 1994: 3-21 [3] Obade PV, Lal R. A standardized soil quality index for diverse field conditions. Science of the Total Environment, 2016, 541: 424-434 [4] Bravo-Medina C, Goyes-Vera F, Arteaga-Crespo Y, et al. A soil quality index for seven productive landscapes in the Andean-Amazonian foothills of Ecuador. Land Degradation and Development, 2021, 32: 2226-2241 [5] 中华人民共和国国务院新闻办公室. 青藏高原生态文明建设状况[EB/OL]. (2018-07-18) [2022-10-10]. http://www.scio.gov.cn/zfbps/32832/Document/1633895/1633895.htm [6] 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12 [7] 傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策. 中国科学院院刊, 2021, 36(11): 1298-1306 [8] 刘军会, 高吉喜, 聂亿黄. 青藏高原生态系统服务价值的遥感测算及其动态变化. 地理与地理信息科学, 2009, 25(3): 81-84 [9] Kuang XX, Jiao JJ. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research-Atmospheres, 2016, 121: 3979-4007 [10] Wang SQ, Tian HQ, Liu JY, et al. Pattern and change of soil organic carbon storage in China: 1960s-1980s. Tellus Series B-Chemical and Physical Meteorology, 2003, 55: 416-427 [11] Dai FQ, Su ZG, Liu SZ, et al. Temporal variation of soil organic matter content and potential determinants in Tibet, China. Catena, 2011, 85: 288-294 [12] Tian LM, Zhao L, Wu XD, et al. Variations in soil nutrient availability across Tibetan grassland from the 1980s to 2010s. Geoderma, 2019, 338: 197-205 [13] Liu SB, Zamanian K, Schleuss PM, et al. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agriculture, Ecosystems and Environment, 2018, 252: 93-104 [14] 中国科学院青藏高原综合科学考察队. 西藏自然地理. 北京: 科学出版社, 1982 [15] 上官微, 戴永久. 面向陆面模拟的中国土壤数据集. 国家青藏高原科学数据中心, 2014 [16] 刘峰, 张甘霖. 青藏高原数字土壤制图产品数据集(2015—2024). 国家青藏高原科学数据中心, 2022 [17] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [18] Xu L, He NP, Yu GR. Methods of evaluating soil bulk density: Impact on estimating large scale soil organic carbon storage. Catena, 2016, 144: 94-101 [19] Jankauskas B, Jankauskiene G, Slepetiene A, et al. International comparison of analytical methods of determining the soil organic matter content of Lithuanian eutric albeluvisols. Communications in Soil Science and Plant Analysis, 2006, 37: 707-720 [20] Guo L, Sun Z, Ouyang Z, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 2017, 152: 135-143 [21] Jin HF, Shi DM, Lou YB, et al. Evaluation of the qua-lity of cultivated-layer soil based on different degrees of erosion in sloping farmland with purple soil in China. Catena, 2021, 198: 105048 [22] Zhao XH, Tong MM, He YJ, et al. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecological Indicators, 2021, 125: 107445 [23] 刘纪远. 中国西部六省多年土地利用现状遥感监测数据集. 国家青藏高原科学数据中心, 2019 [24] 彭守璋. 中国1 km分辨率逐月降水量数据集(1901—2020). 国家青藏高原科学数据中心, 2020 [25] 彭守璋. 中国1 km分辨率逐月平均气温数据集(1901—2020). 国家青藏高原科学数据中心, 2020 [26] Xie ZB, Zhu JG, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13: 1989-2007 [27] 中国气象局. 全球变暖背景下青藏高原发生了哪些变化[EB/OL]. (2021-08-25) [2022-10-10]. https://baijiahao.baidu.com/s?id=1708993697966098193&-wfr=spider&for=pc [28] Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10: 423-436 [29] 朱玉荷, 肖虹, 王冰, 等. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应. 植物生态学报, 2022, 46(3): 340-349 [30] 苟小林. 模拟增温对高山森林土壤碳氮转化的影响. 硕士论文. 成都: 四川农业大学, 2014 [31] 冯茹, 郝晨阳, 马秀枝, 等. 短期模拟增温对大青山油松人工林土壤理化性质的影响. 林业资源管理, 2022(2): 141-148 [32] 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报: 自然科学版, 2008, 44(6): 945-952 [33] 李路, 常亚鹏, 许仲林. 天山雪岭云杉林土壤CNP化学计量特征随水热梯度的变化. 生态学报, 2018, 38(22): 8139-8148 [34] Wang T, Zhang Z, Li Z, et al. Grazing management affects plant diversity and soil properties in a temperate steppe in northern China. Catena, 2017, 158: 141-147 [35] Liu CL, Li WL, Xu J, et al. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau. Soil and Tillage Research, 2021, 206: 104822 [36] 李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118 [37] 彭艳, 孙晶远, 马素洁, 等. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性. 草业学报, 2022, 31(8): 49-60 [38] 杨军, 刘秋蓉, 王向涛. 青藏高原高山嵩草高寒草甸不同退化阶段植物群落与土壤养分. 应用生态学报, 2020, 31(12): 4067-4072 [39] Li LH, Zhang YL, Liu LS, et al. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000-2015. Remote Sensing, 2018, 10: 1525-1540 [40] 石明明, 王喆, 周秉荣, 等. 青藏高原草地退化特征及其与气候因子的关系. 应用生态学报, 2022, 33(12): 3271-3278 [41] 周新, 张伟, 崔鸿. 生态系统的抵抗力和恢复力稳定性. 生物学教学, 2014, 39(4): 4-5 [42] 蒋丛泽, 受娜, 高玮, 等. 青藏高原东北缘不同土地利用类型土壤质量综合评价. 应用生态学报, 2022, 33(12): 3279-3286 [43] Jackson RB, Lajtha K, Crow SE, et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 419-445 [44] 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素. 生态学杂志, 2019, 38(4): 1133-1140 [45] 何宇, 盛茂银, 王轲, 等. 土地利用变化对西南喀斯特土壤团聚体组成、稳定性以及C、N、P化学计量特征的影响. 环境科学, 2022, 43(7): 3752-3762 [46] 李龙, 秦富仓, 姜丽娜, 等. 土地利用方式和地形对半干旱区土壤有机碳含量的影响. 土壤, 2019, 51(2): 406-412 [47] 吴鹏, 崔迎春, 赵文君, 等. 喀斯特森林植被自然恢复过程中土壤化学计量特征. 北京林业大学学报, 2019, 41(3): 80-92 |