应用生态学报 ›› 2020, Vol. 31 ›› Issue (12): 4301-4311.doi: 10.13287/j.1001-9332.202012.033
张雪慧1,2, 张仲胜1*, 武海涛1
收稿日期:
2020-04-22
接受日期:
2020-08-31
发布日期:
2021-06-15
通讯作者:
*E-mail: zzslycn@iga.ac.cn
作者简介:
张雪慧,女,1997年生,硕士研究生。主要从事湿地生态研究。E-mail:zxhdysl@163.com
基金资助:
ZHANG Xue-hui1,2, ZHANG Zhong-sheng1*, WU Hai-tao1
Received:
2020-04-22
Accepted:
2020-08-31
Published:
2021-06-15
Contact:
*E-mail: zzslycn@iga.ac.cn
Supported by:
摘要: 蚂蚁作为生态系统的消费者和分解者,其对土壤有机碳库的影响一直是学术界研究的热点。目前研究主要从蚂蚁对土壤宏量元素储量、理化性质、微生物群落活动等方面探究蚂蚁对土壤有机碳库的影响。本文综述了蚂蚁扰动对土壤有机碳循环过程特征的影响。蚂蚁筑巢改变了蚁穴土壤的微生境、微气候与土壤理化性质,并通过重构土壤微生物群落结构特征、调控地表植被演替过程与格局等方式,直接或间接的影响蚁巢中土壤有机碳来源、碳库分配过程、有机碳库稳定性、有机质微观分子特征等,在微域、局地乃至景观尺度上影响土壤有机碳的循环过程。未来研究应着重从量化蚂蚁扰动及其导致的环境因子波动对土壤碳通量变化的贡献、建立定量模型联系并统一蚂蚁影响下土壤碳循环过程、厘清蚂蚁影响土壤有机碳库稳定性的机制等方面开展深入研究,揭示蚂蚁作为“生态工程师”在调控土壤碳循环过程中的作用机制。
张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展[J]. 应用生态学报, 2020, 31(12): 4301-4311.
ZHANG Xue-hui, ZHANG Zhong-sheng, WU Hai-tao. Effects of ant disturbance on soil organic carbon cycle: A review.[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4301-4311.
[1] Scurlock JMO, Hall DO. The global carbon sink: A grassland perspective. Globa Change Biology, 1998, 4: 229-233 [2] Scheu S, Albers D, Alphei J, et al. The soil fauna community in pure and mixed stands of beech and spruce of different age: Trophic structure and structuring forces. Oikos, 2003, 101: 225-238 [3] Petersen H, Luxton MA. Comparative-analysis of soil fauna populations and their role in decomposition processes. Oikos, 1982, 39: 287-388 [4] Huhta V. The role of soil fauna in ecosystems: A historical review. Pedobiologia, 2007, 50: 489-495 [5] Bottinelli N, Jouquet P, Capowiez Y, et al. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research, 2015, 146: 118-124 [6] Drik S, Frank VFJ. Ecosystem engineering and predation: The multi-trophic impact of two ant species. Journal of Animal Ecology, 2011, 80: 569-576 [7] Jouquet P, Mathieu J, Barot S, et al. Soil engineers as ecosystem heterogeneity drivers// Muoz SI, ed. Ecology Research Progress. New York: Nova Science Publi-shers, 2007: 187-199 [8] Filser J, Faber JH, Tiunov AV, et al. Soil fauna: Key to new carbon models. Soil, 2016, 2: 565-582 [9] Wagner D, Jones JB, Gordon DM. Development of harvester ant colonies alters soil chemistry. Soil Biology & Biochemistry, 2004, 36: 797-804 [10] Wu HT, Batzer DP, Yan XM, et al. Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of Northeastern China. Applied Soil Ecology, 2013, 70: 9-15 [11] Dauber J, Wolters V. Microbial activity and functional diversity in the mounds of three different ant species. Soil Biology and Biochemistry, 2000, 32: 93-99 [12] Domisch T, Finer L, Ohashi M, et al. Contribution of red wood ant mounds to forest floor CO2 efflux in boreal coniferous forests. Soil Biology and Biochemistry, 2006, 38: 2425-2433 [13] Bender MR, Wood CW. Influence of red imported fire ants on greenhouse gas emissions from a piedmont pla-teau pasture. Communications in Soil Science and Plant Analysis, 2003, 34: 1873-1889 [14] Sousa-Souto L, Santos DCD, Ambrogi BG. Increased CO2 emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biology and Biochemistry, 2012, 44: 21-25 [15] Frouz J, Holec M, Kalcik J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia, 2003, 47: 205-212 [16] Farji-Brener AG. Leaf-cutting ant nests and soil biota abundance in a semiarid steppe of Northwestern Patagonia. Sociobiology, 2010, 56: 549-557 [17] Ginzburg O, Whitford WG, Steinberger Y. Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev Desert ecosystem. Biology and Fertility of Soils, 2008, 45: 165-173 [18] Domisch T, Ohashi M, Finer LR, et al. Decomposition of organic matter and nutrient mineralisation in wood ant (Formica rufa group) mounds in boreal coniferous forests of different age. Biology and Fertility Soils, 2008, 44: 539-545 [19] Bierbass P, Gutknecht JLM, Michalzik B. Nest-mounds of the yellow meadow ant (Lasius flavus) at the “Alter Gleisberg”, Central Germany: Hot or cold spots in nutrient cycling? Soil Biology & Biochemistry, 2015, 80: 209-217 [20] Amador JA, Gorres JH. Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biology & Biochemistry, 2007, 39: 2070-2077 [21] Stadler B, Schramm A, Kalbitz K. Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity. Soil Biology & Biochemistry, 2006, 38: 561-572 [22] Schaeffer SM, Evans RD. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colo-rado Plateau shrubland. Oecologia, 2005, 145: 425-433 [23] Scott JJ, Budsberg KJ, Suen G, et al. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PLoS One, 2010, 5(3): e9922 [24] Correa MM, Silva PSD, Wirth R, et al. How leaf-cutting ants impact forests: Drastic nest effects on light environment and plant assemblages. Oecologia, 2010, 162: 103-115 [25] Folgarait PJ. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity and Conservation, 1998, 7: 1221-1244 [26] Jimenez JJ, Decaens T, Lavelle P. C and N concentrations in biogenic structures of a soil-feeding termite and a fungus-growing ant in the Colombian Savannas. Applied Soil Ecology, 2008, 40: 120-128 [27] Debruyn LAL, Conacher AJ. The role of termites and ants in soil modification-a review. Soil Biology and Biochemistry, 1990, 28: 55-93 [28] Garnier-Sillam E, Harry M. Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: Its influence on soil structure stability. Insectes Sociaux, 1995, 42: 167-185 [29] Wagner D, Brown MJF, Gordon DM. Harvester ant nests, soil biota and soil chemistry. Oecologia, 1997, 112: 232-236 [30] Cammeraat ELH, RischAC. The impact of ants on mine-ral soil properties and processes at different spatial scales. Journal of Applied Entomology, 2008, 132: 285-294 [31] Hasin S, Ohashi M, Yamada A, et al. CO2 efflux from subterranean nests of ant communities in a seasonal tropi-cal forest, Thailand. Ecology and Evolution, 2014, 4: 3929-3939 [32] Frouz J, Jilková V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News, 2008, 11: 191-199 [33] Hughes L. The relocation of ant nest entrances: Potential consequences for ant-dispersed seeds. Australian Journal of Ecology, 1990, 16: 207-214 [34] Sarcinelli TS, Schaefer CEGR, Filho EIF, et al. Soil modication by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest. Journal of Tropical Ecology, 2013, 29: 439-448 [35] Cerda A, Jurgensen MF. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology, 2008, 132: 306-314 [36] 陈元瑶, 魏琮, 贺虹,等. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究. 西北林学院学报, 2012, 27(2): 121-126 [Chen Y-Y, Wei Z, He H, et al. Correlation of physicochemical characteristics and microbial biomass among nest soil of Camponotus japonicus and Pachycondyla astute in Qinling Mountains. Journal of Northwest Forestry University, 2012, 27(2): 121-126] [37] 刘满强, 陈小云, 郭菊花, 等. 土壤生物对土壤有机碳稳定性的影响. 地球科学进展, 2007, 22(2): 152-158 [Liu M-Q, Chen X-Y, Guo J-H, et al. Soil biota on soil organic carbon stabilization. Advance in Earth Science, 2007, 22(2): 152-158] [38] Cammeraat LH, Willott SJ, Compton SG, et al. The effects of ants' nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 2002, 105: 1-20 [39] Green WP, Pettry DE, Switzer RE. Structure and hydrology of mounds of theimported fire ants in the southeastern United States. Geoderma, 1999, 93: 1-17 [40] Cerda A, Jurgensen MF. Ant mounds as a source of sedi-ment on citrus orchard plantations in eastern Spain: A three-scale rainfall simulation approach. Catena, 2011, 85: 231-236 [41] Mikheyev AS, Tschinkel WR. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Sociaux, 2004, 51: 30-36 [42] 董星丰, 陈强, 臧淑英, 等. 温度和水分对大兴安岭多年冻土区森林土壤有机碳矿化的影响. 环境科学学报, 2019, 39(12): 4269-4275 [Dong X-F, Chen Q, Zang S-Y, et al. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost forest in the Great Hing'an Mountains. Acta Scientiae Circumstantiae, 2019, 39(12): 4269-4275] [43] Wagner D, Jones JB. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert. Soil Biology & Biochemistry, 2006, 38: 2593-2601 [44] Frouz J, Kalcˇík J, Cudlín P. Accumulation of phosphorus in nests of red wood ants Formica s. str. Annales Zoologici Fennici, 2015, 42: 269-275 [45] Zhou GY, Guan LL, Wei XH, et al. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China. Plant and Soil, 2008, 311: 61-72 [46] Farji-Brener AG, Ghermandi L. Leaf-cutting ant nests near roads increase fitnessof exotic plant species in natural protected areas. Proceedings of the Royal Society B-Biological Sciences, 2008, 275: 1431-1440 [47] Xiao W, Feng SZ, Liu ZF, et al. Interactions of soil particulate organic matter chemistry and microbial community composition mediating carbon mineralization in karst soils. Soil Biology and Biochemistry, 2017, 107: 85-93 [48] von Lützow M, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mecha-nisms and their relevance under different soil conditions-A review. European Journal of Soil Science, 2006, 57: 426-445 [49] Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 2002, 34:139-162 [50] Knicker H. Stabilization of N-compounds in soil and organic-matter-rich sediments: What is the difference? Marine Chemistry, 2004, 92: 167-195 [51] Krsek M, Wellington EMH. Assessment of chitin decomposer diversity within an upland grassland. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2001, 79: 261-267 [52] Saxena P, Kumar A, Shrivastava JN. Diversity of keratinophilic mycoflora in the soil of Agra (India). Folia Microbiologica, 2004, 49: 430-434 [53] Boulton AM, Amberman KD. How ant nests increase soil biota richness and abundance: A field experiment. Biodiversity and Conservation, 2006, 15: 69-82 [54] Bundt M, Widmer F, Pesaro M, et al. Preferential flow paths: Biological ‘hot spots' in soils. Soil Biology and Biochemistry, 2001, 33: 729-738 [55] Six J, Feller C, Denef K, et al. Soil organic matter, biota and aggregation in temperate and tropical soils: Effects of no-tillage. Agronomie, 2002, 22: 755-775 [56] Pinto-Tomas AA, Anderson MA, Suen G, et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science, 2009, 326: 1120-1123 [57] Zhang ZS, Wei Z, Wang JJ, et al. Ants alter molecular characteristics of soil organic carbon determined by pyrolysis-chromatography/mass spectrometry. Applied Soil Ecology, 2018, 130: 91-97 [58] Friese CF, Allen MF. The interaction of harvester ants and vesicular-arbuscular mycorrhizal fungi in a patchy semi-arid environment: The effects of mound structure on fungal dispersion and establishment. Functional Ecology, 1993, 7: 13-20 [59] Gange AC. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biology and Biochemistry, 1993, 25: 1021-1026 [60] Endlweber K, Scheu S. Interactions between mycorrhizal fungi and Collembola: Effects on root structure of competing plant species. Biology and Fertility of Soils, 2007, 43: 741-749 [61] Gange A. Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends in Ecology and Evolution, 2000, 15: 369-372 [62] Blomqvist MM, Olff H, Blaauw MB, et al. Interactions between above- and belowground biota: Importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos, 2000, 90: 582-598 [63] Gormsen D, Olsson PA, Hedlund K. The influence of collembolans and earthworms on AM fungal mycelium. Applied Soil Ecology, 2004, 27: 211-220 [64] Dauber J, Niechoj R, Baltruschat H, et al. Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biology and Fertility of Soils, 2008, 44: 791-796 [65] Shipitalo MJ, Protz R. Chemistry and micromorphology of aggregation in earthworm casts. Geoderma, 1989, 45: 357-374 [66] Marinissen JCY, Dexter AR. Mechanisms of stabilization of earthworm casts and artificial casts. Biology and Fertility Soils, 1990, 9: 163-167 [67] 杨坤, 于季红. 土壤多糖的研究进展. 中国农学通报, 2014, 30(36): 222-225 [Yang K, Yu J-H. The research progress of soil polysaccharide. Chinese Agricultural Science Bulletin, 2014, 30(36): 222-225] [68] Rawlins AJ, Bull ID, Ineson P, et al. Stabilization of soil organic matter in invertebrate faecal pellets through leaf litter grazing. Soil Biology and Biochemistry, 2007, 39: 1202-1205 [69] David JF. The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology & Biochemistry, 2014, 76: 109-118 [70] Lafleur B, Bradley RL, Francoeur A. Soil modifications created by ants along a post-fire chronosequence in lichen-spruce woodland. Ecoscience, 2002, 9: 63-73 [71] Brauman A. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology, 2000, 36: 117-125 [72] Shan J, Brune A, Ji R. Selective digestion of the proteinaceous component of humic substances by the geopha-gous earthworms Metaphire guillelmi and Amynthas corrugatus. Soil Biology and Biochemistry, 2010, 42: 1455-1462 [73] Ji R, Kappler A, Brune A. Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biology and Biochemistry, 2000, 32: 1281-1291 [74] Ji R, Brune A. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology & Biochemistry, 2005, 37: 1648-1655 [75] Christian CE. Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature, 2001, 413: 635-639 [76] Pringle EG, Novo A, Ableson I, et al. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants. Ecology and Evolution, 2014, 4: 4065-4079 [77] Styrsky JD, Eubanks MD. Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B-Biological Sciences, 2007, 274: 151-164 [78] Powers RF, Scott DA, Sanchez FG, et al. The North American long-term soil productivity experiment: Findings from the first decade of research. Forest Ecology Management, 2005, 220: 31-50 [79] Ohashi M, Finer L, Domisch T, et al. Seasonal and diural CO2 efflux fromred wood ant (Formica aquilonia) mounds in boreal coniferous forests. Soil Biology & Biochemistry, 2007, 39: 1504-1511 [80] Kovar P, Kovarova M, Dostal P, et al. Vegetation of ant-hills in a mountain grassland: Effects of mound history and of dominant ant species. Plant Ecology, 2001, 156: 215-227 [81] Dostal P, Breznova M, Kozlickova V, et al. Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 2005, 49: 127-137 [82] Rothanzl J, Kotoucova M, Hrabinova I, et al. Genetic differentiation of Agrostis capillaris in a grassland system with stable heterogeneity due to terricolous ants. Journal of Ecology, 2007, 95: 197-207 [83] Rasmussen C, White DA. Vegetation effects on soil organic carbon quality in an arid hyperthermic ecosystem. Soil Science, 2010, 175: 438-446 [84] Normand AE, Smith AN, Clark MW, et al. Chemical composition of soil organic matter in a subarctic peatland: Influence of shifting vegetation communities. Soil Science Society of America Journal, 2017, 81: 41-49 [85] Brown MJF, Human KG. Effects of harvester ants on plant species distribution and abundance in a serpentine grassland. Oecologia, 1997, 112: 237-243 [86] Farji-Brener AG, Ghermandi L. Influence of nests of leaf-cutting ants on plant species diversity in road verges of northern Patagonia. Journal of Vegetation Science, 2000, 11: 453-460 [87] MacMahon JA, Mull JF, Crist TO. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annual Review of Ecology and Systematics, 2000, 31: 265-291 [88] Dostal P. Population dynamics of annuals in perennial grassland controlled by ants and environmental stochasticity. Journal of Vegetation Science, 2007, 18: 91-102 [89] 李少辉, 王邵军, 张哲, 等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响. 应用生态学报, 2019, 30(2): 413-419 [Li S-H, Wang S-J, Zhang Z, et al. Effects of ant nesting on the spatiotemporal dynamics of soil easily oxidized organic carbon in Xishuangbanna tropical forests, China. Chinese Journal of Applied Ecology, 2019, 30(2): 413-419] [90] Jurgensen MF, Finer L, Domisch T, et al. Organic mound-building ants: Their impact on soil properties in temperate and boreal forests. Journal of Applied Entomo-logy, 2008, 132: 266-275 [91] Risch AC, Jurgensen MF, Schutz M, et al. The contribution of red wood ants to soil C and N pools and to CO2 emissions in subalpine forests. Ecology, 2005, 86: 419-430 [92] Rumpel C, Kögel-Knabner I, Bruhn F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochememistry, 2002, 33: 1131-1142 [93] Nierop KGJ, Verstraten JM. Organic matter formation in sandy subsurface horizons of Dutch coastal dunes in relation to soil acidification. Organic Geochemistry, 2003, 34: 499-513 [94] Derenne S, Largeau C. A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Science, 2001, 166: 833-847 [95] Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 2003, 113: 273-291 [96] Kalbitz K, Schwesig D, Schmerwitz J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biology & Biochemistry, 2003, 35: 1129-1142 [97] Pisani O, Hills KM, Courtier-Murias D, et al. Molecular level analysis of long term vegetative shifts and relationshipsto soil organic matter composition. Organic Geochemistry, 2013, 62: 7-16 [98] Wood TG, Sands WA, 凌云. 白蚁在生态系中的作用. 白蚁科技, 1988(suppl. 1): 6-40 [Wood TG, Sands WA, Ling Y. The role of termites in ecosystems. Science and Technology of Temites, 1988(suppl.1): 6-40] |
[1] | 洪宣生, 王宗星, 徐清福, 邱勇斌, 成向荣. 杉木+闽楠复层林土壤氮磷组分及微生物性状随林龄变化特征 [J]. 应用生态学报, 2024, 35(3): 622-630. |
[2] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[3] | 解玲玲, 王邵军, 肖博, 王郑钧, 郭志鹏, 郭晓飞, 罗双, 李瑞, 夏佳慧, 兰梦杰, 杨胜秋. 蚂蚁巢穴对高檐蒲桃热带次生林土壤CH4排放通量的影响 [J]. 应用生态学报, 2024, 35(3): 678-686. |
[4] | 杨雪, 曹霞, 白冰, 袁艳娜, 张宁, 谢洋, 武春成. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响 [J]. 应用生态学报, 2024, 35(3): 713-720. |
[5] | 翁凌胤, 栾冬冬, 周大朴, 郭庆港, 王光州, 张俊伶. 利用合成菌群促进作物健康: 进展与展望 [J]. 应用生态学报, 2024, 35(3): 847-857. |
[6] | 李佳玉, 施秀珍, 李帅军, 王振宇, 王建青, 邹秉章, 王思荣, 黄志群. 杉木人工林和天然次生林林龄对土壤酶活性的影响 [J]. 应用生态学报, 2024, 35(2): 339-346. |
[7] | 朱雪峰, 孔维栋, 黄懿梅, 肖可青, 罗煜, 安韶山, 梁超. 土壤微生物碳泵概念体系2.0 [J]. 应用生态学报, 2024, 35(1): 102-110. |
[8] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[9] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[10] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[11] | 覃振凯, 刘润红, 何鹏, 王聪, 聂彦霞, 申卫军. 马尾松纯林混交改造对土壤微生物残体碳和有机碳组分的影响 [J]. 应用生态学报, 2024, 35(1): 141-152. |
[12] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[13] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[14] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[15] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||